Internet DRAFT - draft-iab-protocol-transitions

draft-iab-protocol-transitions







Internet Architecture Board                               D. Thaler, Ed.
Internet-Draft                                                 Microsoft
Intended status: Informational                             March 8, 2017
Expires: September 9, 2017


       Planning for Protocol Adoption and Subsequent Transitions
                 draft-iab-protocol-transitions-08.txt

Abstract

   Over the many years since the introduction of the Internet Protocol,
   we have seen a number of transitions throughout the protocol stack,
   such as deploying a new protocol, or updating or replacing an
   existing protocol.  Many protocols and technologies were not designed
   to enable smooth transition to alternatives or to easily deploy
   extensions, and thus some transitions, such as the introduction of
   IPv6, have been difficult.  This document attempts to summarize some
   basic principles to enable future transitions, and also summarizes
   what makes for a good transition plan.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 9, 2017.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect



Thaler                  Expires September 9, 2017               [Page 1]

Internet-Draft           Planning for Transition              March 2017


   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Extensibility . . . . . . . . . . . . . . . . . . . . . . . .   4
   3.  Transition vs. Co-existence . . . . . . . . . . . . . . . . .   5
   4.  Translation/Adaptation Location . . . . . . . . . . . . . . .   6
   5.  Transition Plans  . . . . . . . . . . . . . . . . . . . . . .   7
     5.1.  Understanding of Existing Deployment  . . . . . . . . . .   7
     5.2.  Explanation of Incentives . . . . . . . . . . . . . . . .   7
     5.3.  Description of Phases and Proposed Criteria . . . . . . .   8
     5.4.  Measurement of Success  . . . . . . . . . . . . . . . . .   8
     5.5.  Contingency Planning  . . . . . . . . . . . . . . . . . .   8
     5.6.  Communicating the Plan  . . . . . . . . . . . . . . . . .   9
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .   9
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   9
   8.  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . .   9
   9.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  10
   10. IAB Members at the Time of This Writing . . . . . . . . . . .  10
   11. Informative References  . . . . . . . . . . . . . . . . . . .  10
   Appendix A.  Case Studies . . . . . . . . . . . . . . . . . . . .  14
     A.1.  Explicit Congestion Notification  . . . . . . . . . . . .  14
     A.2.  Internationalized Domain Names  . . . . . . . . . . . . .  15
     A.3.  IPv6  . . . . . . . . . . . . . . . . . . . . . . . . . .  17
     A.4.  HTTP  . . . . . . . . . . . . . . . . . . . . . . . . . .  19
       A.4.1.  Protocol Versioning, Extensions and 'Grease'  . . . .  20
       A.4.2.  Limits on Changes in Major Versions . . . . . . . . .  20
       A.4.3.  Planning for Replacement  . . . . . . . . . . . . . .  21
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  22

1.  Introduction

   A "transition" is the process or period of changing from one state or
   condition to another.  There are several types of such transitions,
   including both technical transitions (e.g., changing protocols or
   deploying an extension) and organizational transitions (e.g.,
   changing what organization manages a web site).  This document
   focuses solely on technical transitions, although some principles
   might apply to other types as well.

   In this document we use the term transition generically to apply to
   any of:

   o  adoption of a new protocol where none existed before,



Thaler                  Expires September 9, 2017               [Page 2]

Internet-Draft           Planning for Transition              March 2017


   o  deployment of a new protocol that obsoletes a previous protocol,

   o  deployment of a updated version of an existing protocol, or

   o  decommissioning of an obsolete protocol.

   There have been many IETF and IAB RFCs and IAB statements discussing
   transitions of various sorts.  Most are protocol-specific documents
   about specific transitions.  For example, some relevant ones in which
   the IAB has been involved include:

   o  IAB RFC 3424 [RFC3424] recommended that any technology for so-
      called "unilateral self-address fixing (UNSAF)" across NATs
      include an exit strategy to transition away from such a mechanism.
      Since the IESG, not the IAB, approves IETF documents, the IESG
      thus became the body to enforce (or not) such a requirement.

   o  IAB RFC 4690 [RFC4690] gave recommendations around
      internationalized domain names.  It discussed issues around the
      process of transitioning to new versions of Unicode, and this
      resulted in the creation of the IETF Precis WG to address this
      problem.

   o  The IAB statement on "Follow-up-work on NAT-PT"
      [IabIpv6TransitionStatement] pointed out gaps at the time in
      transitioning to IPv6, and this resulted in the rechartering of
      the IETF Behave WG to solve this problem.

   More recently, the IAB has done work on more generally applicable
   principles, including two RFCs.

   IAB RFC 5218 [RFC5218] on "What Makes for a Successful Protocol?"
   studied specifically what factors contribute to, and detract from,
   the success of a protocol and it made a number of recommendations.
   It discussed two types of transitions: "initial success" (the
   transition to the technology) and extensibility (the transition to
   updated versions of it).  The principles and recommendations in that
   document are generally applicable to all technical transitions.  Some
   important principles included:

   1.  Incentive: Transition is easiest when the benefits come to those
       bearing the costs.  That is, the benefits should outweigh the
       costs at *each* entity.  Some successful cases did this by
       providing incentives (e.g., tax breaks), or by reducing costs
       (e.g., freely available source), or by imposing costs of not
       transitioning (e.g., regulation), or even by narrowing the
       scenarios of applicability to just the cases where benefits do
       outweigh costs at all relevant entities.



Thaler                  Expires September 9, 2017               [Page 3]

Internet-Draft           Planning for Transition              March 2017


   2.  Incremental Deployability: Backwards compatibility makes
       transition easier.  Furthermore, transition is easiest when
       changing only one entity still benefits that entity.  In the
       easiest case, the benefit immediately outweighs the cost and so
       entities are naturally incented to transition.  More commonly,
       the benefits only outweigh the costs once a significant number of
       other entities also transition.  Unfortunately, in such cases,
       the natural incentive is often to delay transitioning.

   3.  Total Cost: It is import to consider costs that go beyond the
       core hardware and software, such as operational tools and
       processes, personnel training, business model (accounting/
       billing) dependencies, and legal (regulation, patents, etc.)
       costs.

   4.  Extensibility: Design for extensibility [RFC6709] so that things
       can be fixed up later.

   IAB RFC 7305 [RFC7305] reported on a IAB workshop on Internet
   Technology Adoption and Transition (ITAT).  Like RFC 5218, this
   workshop also discussed economic aspects of transition, not just
   technical aspects.  Some important observations included:

   1.  Early-Adopter Incentives: Part of Bitcoin's strategy was extra
       incentives for early adopters compared to late adopters.  That
       is, providing a long-term advantage to early adopters can help
       stimulate transition even when the initial costs outweigh the
       initial benefit.

   2.  Policy Partners: Policy-making organizations of various sorts
       (RIRs, ICANN, etc.) can be important partners in enabling and
       facilitating transition.

   The remainder of this document continues the discussion started in
   those two RFCs and provides some additional thoughts on the topic of
   transition strategies and plans.

2.  Extensibility

   Many protocols are designed to be extensible, using mechanisms such
   as options, version negotiation, etc., to ease the transition to new
   features.  However, implementations often succumb to commercial
   pressures to ignore this flexibility in favor of performance or
   economy, and as a result such extension mechanisms (e.g., IPv6 Hop-
   by-Hop Options) often experience problems in practice once they begin
   to be used.  In other cases, a mechanism might be put into a protocol
   for future use without having an adequate sense of how it will be
   used, which causes problems later (e.g., SNMP's original 'security'



Thaler                  Expires September 9, 2017               [Page 4]

Internet-Draft           Planning for Transition              March 2017


   field, or the IPv6 Flow Label).  Thus, designers need to consider
   whether it would be easier to transition to a new protocol than it
   would be to ensure that an extension point is correctly specified and
   implemented such that it would be available when needed.

   A protocol that plans for its own eventual replacement during its
   design makes later transitions easier.  Developing and testing a
   design for the technical mechanisms needed to signal or negotiate a
   replacement is essential in such a plan.

   When there is interest in translation between a new mechanism and an
   old one, complexity of such translation must also be considered.  The
   major challenge in translation is for semantic differences.  Often,
   syntactic differences can be translated seamlessly; semantic ones
   almost never.  Hence when designing for translatability, syntactic
   and semantic differences should be clearly documented.

   See RFC 3692 [RFC3692] and RFC 6709 [RFC6709] for more discussion of
   design considerations for protocol extensions.

3.  Transition vs. Co-existence

   There is an important distinction between a strict "flag-day" style
   transition where an old mechanism is immediately replaced with a new
   mechanism, vs. a looser co-existence based approach where transition
   proceeds in stages where a new mechanism is first added alongside an
   existing one for some overlap period, and then the old mechanism is
   removed at a later stage.

   When a new mechanism is backwards compatible with an existing
   mechanism, transition is easiest because different parties can
   transition at different times.  However, when no backwards
   compatibility exists such as in the IPv4 to IPv6 transition, a
   transition plan must choose either a "flag day" or a period of co-
   existence.  When a large number of entities are involved, a flag day
   becomes impractical or even impossible.  Coexistence, on the other
   hand, involves additional costs of maintaining two separate
   mechanisms during the overlap period which could be quite long.
   Furthermore, the longer the overlap period, the more the old
   mechanism might get further deployment and thus increase the overall
   pain of transition.

   Often the decision between a "flag day" and a sustained co-existence
   period may be complicated when differing incentives are involved
   (e.g., see the case studies in the Appendix).

   Some new protocols or protocol versions are developed with the intent
   of never retiring the protocol they intend to replace.  Such a



Thaler                  Expires September 9, 2017               [Page 5]

Internet-Draft           Planning for Transition              March 2017


   protocol might only aim to address a subset of the use cases for
   which an original is used.  For these protocols, coexistence is the
   end state.

   Indefinite coexistence as an approach could be viable if removal of
   the existing protocol is not an urgent goal.  It might also be
   necessary for "wildly successful" protocols that have more disparate
   uses than can reasonably be considered during the design of a
   replacement.  For example, HTTP/2 does not aspire to cause the
   eventual decommissioning of HTTP/1.1 for these reasons.

4.  Translation/Adaptation Location

   A translation or adaptation mechanism is often required if the old
   and new mechanisms are not interoperable.  Care must be taken when
   determining whether one will work and where such a translator is best
   placed.

   A translation mechanism may not work for every use case.  For
   example, if a translation from one protocol (or protocol version) to
   another produces indeterminate results, translation will not work
   reliably.  In addition, if translation always produces a downgraded
   protocol result, the incentive considerations in Section 5.2 will be
   relevant.

   Requiring a translator in the middle of the path can hamper end-to-
   end security and reliability.  For example, see the discussion of
   network-based filtering in [RFC7754].

   On the other hand, requiring a translation layer within an endpoint
   can be a resource issue in some cases, such as if the endpoint could
   be a constrained node [RFC7228].

   In addition, when a translator is within an endpoint, it can can
   attempt to hide the difference between an older protocol and a newer
   protocol, either by exposing one of the two sets of behavior to
   applications and internally mapping it to the other set of behavior,
   or by exposing a higher level of abstraction which is then
   alternatively mapped to either one depending on detecting which is
   needed.  In contrast, when a translator is in the middle of the path,
   typically only the first approach can be done since the middle of the
   path is typically unable to provide a higher level of abstraction.

   Any transition strategy for a non-backward-compatible mechanism
   should include a discussion of where it is placed and a rationale.
   The transition plan should also consider the transition away from the
   use of translation and adaptation technologies.




Thaler                  Expires September 9, 2017               [Page 6]

Internet-Draft           Planning for Transition              March 2017


5.  Transition Plans

   A review of the case studies described in Appendix A suggests that a
   good transition plan includes at least the following components: an
   understanding of what is already deployed and in use, an explanation
   of incentives for each entity involved, a description of the phases
   of the transition along with a proposed criteria for each phase, a
   method for measuring the transition's success, a contingency plan for
   failure of the transition, and an effective method for communicating
   the plan to the entities involved and incorporating their feedback
   thereon.  We recommend that such criteria be considered when
   evaluating proposals to transition to new or updated protocols.  Each
   of these components is discussed in the subsections below.

5.1.  Understanding of Existing Deployment

   Often an existing mechanism has variations in implementations and
   operational deployments.  For example, a specification might include
   optional behaviors that may or may not be implemented or deployed.
   In addition, there may also be implementations or deployments that
   deviate from, or include vendor-specific extensions to, various
   aspects of a specification.  It is important when considering a
   transition to understand what variations one is intending to
   transition from or co-exist with, since the technical and non-
   technical issues may vary greatly as a result.

5.2.  Explanation of Incentives

   A transition plan should explain the incentives to each involved
   entity to support the transition.  Note here that many entities other
   than the endpoint applications and their users may be affected, and
   the barriers to transition may be nontechnical as well as technical.
   When considering these incentives, also consider network operations
   tools, practices, and processes, personnel training, accounting and
   billing dependencies, and legal and regulatory incentives.

   If there is opposition to a particular new protocol (e.g., from
   another standards organization, or a government, or some other
   affected entity), various non-technical issues arise that should be
   part of what is planned and dealt with.  Similarly, if there are
   significant costs or other disincentives, the plan needs to consider
   how to overcome them.

   It's worth noting that an analysis of incentives can be difficult and
   at times led astray by wishful thinking, as opposed to adequately
   considering economic realities.  Thus, honestly considering any
   barriers to transition, and justifying one's conclusions about
   others' incentives, are key to a successful analysis.



Thaler                  Expires September 9, 2017               [Page 7]

Internet-Draft           Planning for Transition              March 2017


5.3.  Description of Phases and Proposed Criteria

   Transition phases might include pilot/experimental deployment,
   coexistence, deprecation, and removal phases for a transition from
   one technology to another incompatible one.

   Timelines are notoriously difficult to predict and impossible to
   impose on uncoordinated transitions at the scale of the Internet, but
   rough estimates can sometimes help all involved entities to
   understand the intended duration of each phase.  More often, it is
   useful to provide criteria that must be met in order to move to the
   next phase.  For example, is removal scheduled for a particular date
   (e.g., FCC regulation to discontinue analog TV broadcasts in the U.S.
   by June 12, 2009)?  Or is removal to be based on the use of the old
   mechanism falling below a specified level?  Or some other criteria?

   As one example, RFC 5211 [RFC5211] proposed a transition plan for
   IPv6 that included a proposed timeline, and criteria specific to each
   phase.  While the timeline was not accurately followed, the phases
   and timeline did serve as inputs to the World IPv6 Day and World IPv6
   Launch events.

5.4.  Measurement of Success

   The degree of deployment of a given protocol or feature at a given
   phase in its transition can be measured differently, depending on its
   design.  For example, server-side protocols and options which
   identify themselves through a versioning or negotiation mechanism can
   be discovered through active Internet measurement studies.

5.5.  Contingency Planning

   A contingency plan can be as simple as providing for indefinite
   coexistence between an old and new protocol, or for reverting to the
   old protocol until an updated version of the new protocol is
   available.  Such a plan is useful in the event that unforeseen
   problems are discovered during deployment, so that such problems can
   be quickly mitigated.

   For example, World IPv6 Day included a contingency plan which was to
   revert to the original state at the end of the day.  After
   discovering no issues, some participants found that this contingency
   plan was unnecessary and kept the new state.








Thaler                  Expires September 9, 2017               [Page 8]

Internet-Draft           Planning for Transition              March 2017


5.6.  Communicating the Plan

   Many of the entities involved in a protocol transition may not be
   aware of the IETF or the RFC series, so dissemination through other
   channels is key for sufficiently broad communication of the
   transition plan.  While flag days are impractical at Internet scale,
   coordinated "events" such as World IPv6 Launch may improve general
   awareness of an ongoing transition.

   Also, there is often a need for an entity facilitating the transition
   through advocacy and focus.  Such an entity, independent of the IETF,
   can be key in communicating the plan and its progress.

   Some transitions have a risk of breaking backwards compatibility for
   some fraction of users.  In such a case, when a transition affects
   competing entities facing the risk of losing customers to each other,
   there is an economic disincentive to transition.  Thus, one role for
   a facilitating entity is to get competitors to transition during the
   same timeframe, so as to mitigate this fear.  For example, the
   success of World IPv6 Launch was largely due to ISOC playing this
   role.

6.  Security Considerations

   This document discusses attributes of protocol transitions.  Some
   types of transition can adversely affect security or privacy.  For
   example, requiring a translator in the middle of the path may hamper
   end-to-end security and privacy, since it creates an attractive
   target.  For further discussion of some of these issues, see
   Section 5 of [RFC7754].

   In addition, coexistence of two protocols in general increases risk
   in the sense that it doubles the attack surface and allows attacks
   that exploit the weaker of the two protocols by claiming not to
   understand the stronger one.

7.  IANA Considerations

   This document requires no actions by the IANA.

8.  Conclusion

   This document summarized the set of issues that should be considered
   by protocol designers and deployers to facilitate such transition and
   provides pointers to previous work (e.g., [RFC3692], [RFC6709]) that
   provided detailed design guidelines.  This document also covered what
   makes for a good transition plan, and includes several case studies
   that provide examples.  As more experience is gained over time on how



Thaler                  Expires September 9, 2017               [Page 9]

Internet-Draft           Planning for Transition              March 2017


   to successfully apply these principles and design effective
   transition plans, we encourage the community to share such learnings
   with the IETF community and on the architecture-discuss@ietf.org
   mailing list so that any future document on this topic can leverage
   such experience.

9.  Acknowledgements

   This document is a product of the IAB Stack Evolution Program, with
   input from many others.  In particular, Mark Nottingham, Dave
   Crocker, Eliot Lear, Joe Touch, Cameron Byrne, John Klensin, Patrik
   Faltstrom, the IETF Applications Area WG, and others provided helpful
   input on this document.

10.  IAB Members at the Time of This Writing

   Jari Arkko
   Ralph Droms
   Ted Hardie
   Joe Hildebrand
   Russ Housley
   Lee Howard
   Erik Nordmark
   Robert Sparks
   Andrew Sullivan
   Dave Thaler
   Martin Thomson
   Brian Trammell
   Suzanne Woolf

11.  Informative References

   [HTTP0.9]  Tim Berners-Lee, "The Original HTTP as defined in 1991",
              1991, <https://www.w3.org/Protocols/HTTP/
              AsImplemented.html>.

   [I-D.ietf-tls-grease]
              Benjamin, D., "Applying GREASE to TLS Extensibility",
              draft-ietf-tls-grease-00 (work in progress), January 2017.

   [IabIpv6TransitionStatement]
              IAB, "Follow-up work on NAT-PT", October 2007,
              <https://www.iab.org/documents/correspondence-reports-
              documents/docs2007/follow-up-work-on-nat-pt//>.







Thaler                  Expires September 9, 2017              [Page 10]

Internet-Draft           Planning for Transition              March 2017


   [IPv6Survey2011]
              Botterman, M., "IPv6 Deployment Survey", 2011,
              <https://www.nro.net/wp-content/uploads/
              ipv6_deployment_survey.pdf>.

   [IPv6Survey2015]
              British Telecommunications, "IPv6 Industry Survey Report",
              August 2015, <http://www.globalservices.bt.com/static/asse
              ts/pdf/products/diamond_ip/IPv6-Survey-Report-2015.pdf>.

   [PAM2015]  Trammell, B., Kuehlewind, M., Boppart, D., Learmonth, I.,
              Fairhurst, G., and R. Scheffenegger, "Enabling Internet-
              Wide Deployment of Explicit Congestion Notification",
              Proceedings of PAM 2015, 2015, <target:
              http://ecn.ethz.ch/ecn-pam15.pdf>.

   [RFC1883]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
              (IPv6) Specification", RFC 1883, DOI 10.17487/RFC1883,
              December 1995, <http://www.rfc-editor.org/info/rfc1883>.

   [RFC1933]  Gilligan, R. and E. Nordmark, "Transition Mechanisms for
              IPv6 Hosts and Routers", RFC 1933, DOI 10.17487/RFC1933,
              April 1996, <http://www.rfc-editor.org/info/rfc1933>.

   [RFC1945]  Berners-Lee, T., Fielding, R., and H. Frystyk, "Hypertext
              Transfer Protocol -- HTTP/1.0", RFC 1945,
              DOI 10.17487/RFC1945, May 1996,
              <http://www.rfc-editor.org/info/rfc1945>.

   [RFC2068]  Fielding, R., Gettys, J., Mogul, J., Frystyk, H., and T.
              Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1",
              RFC 2068, DOI 10.17487/RFC2068, January 1997,
              <http://www.rfc-editor.org/info/rfc2068>.

   [RFC2145]  Mogul, J., Fielding, R., Gettys, J., and H. Frystyk, "Use
              and Interpretation of HTTP Version Numbers", RFC 2145,
              DOI 10.17487/RFC2145, May 1997,
              <http://www.rfc-editor.org/info/rfc2145>.

   [RFC2893]  Gilligan, R. and E. Nordmark, "Transition Mechanisms for
              IPv6 Hosts and Routers", RFC 2893, DOI 10.17487/RFC2893,
              August 2000, <http://www.rfc-editor.org/info/rfc2893>.

   [RFC3168]  Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
              of Explicit Congestion Notification (ECN) to IP",
              RFC 3168, DOI 10.17487/RFC3168, September 2001,
              <http://www.rfc-editor.org/info/rfc3168>.




Thaler                  Expires September 9, 2017              [Page 11]

Internet-Draft           Planning for Transition              March 2017


   [RFC3424]  Daigle, L., Ed. and IAB, "IAB Considerations for
              UNilateral Self-Address Fixing (UNSAF) Across Network
              Address Translation", RFC 3424, DOI 10.17487/RFC3424,
              November 2002, <http://www.rfc-editor.org/info/rfc3424>.

   [RFC3692]  Narten, T., "Assigning Experimental and Testing Numbers
              Considered Useful", BCP 82, RFC 3692,
              DOI 10.17487/RFC3692, January 2004,
              <http://www.rfc-editor.org/info/rfc3692>.

   [RFC4380]  Huitema, C., "Teredo: Tunneling IPv6 over UDP through
              Network Address Translations (NATs)", RFC 4380,
              DOI 10.17487/RFC4380, February 2006,
              <http://www.rfc-editor.org/info/rfc4380>.

   [RFC4632]  Fuller, V. and T. Li, "Classless Inter-domain Routing
              (CIDR): The Internet Address Assignment and Aggregation
              Plan", BCP 122, RFC 4632, DOI 10.17487/RFC4632, August
              2006, <http://www.rfc-editor.org/info/rfc4632>.

   [RFC4690]  Klensin, J., Faltstrom, P., Karp, C., and IAB, "Review and
              Recommendations for Internationalized Domain Names
              (IDNs)", RFC 4690, DOI 10.17487/RFC4690, September 2006,
              <http://www.rfc-editor.org/info/rfc4690>.

   [RFC5211]  Curran, J., "An Internet Transition Plan", RFC 5211,
              DOI 10.17487/RFC5211, July 2008,
              <http://www.rfc-editor.org/info/rfc5211>.

   [RFC5218]  Thaler, D. and B. Aboba, "What Makes For a Successful
              Protocol?", RFC 5218, DOI 10.17487/RFC5218, July 2008,
              <http://www.rfc-editor.org/info/rfc5218>.

   [RFC5894]  Klensin, J., "Internationalized Domain Names for
              Applications (IDNA): Background, Explanation, and
              Rationale", RFC 5894, DOI 10.17487/RFC5894, August 2010,
              <http://www.rfc-editor.org/info/rfc5894>.

   [RFC5895]  Resnick, P. and P. Hoffman, "Mapping Characters for
              Internationalized Domain Names in Applications (IDNA)
              2008", RFC 5895, DOI 10.17487/RFC5895, September 2010,
              <http://www.rfc-editor.org/info/rfc5895>.

   [RFC6055]  Thaler, D., Klensin, J., and S. Cheshire, "IAB Thoughts on
              Encodings for Internationalized Domain Names", RFC 6055,
              DOI 10.17487/RFC6055, February 2011,
              <http://www.rfc-editor.org/info/rfc6055>.




Thaler                  Expires September 9, 2017              [Page 12]

Internet-Draft           Planning for Transition              March 2017


   [RFC6146]  Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
              NAT64: Network Address and Protocol Translation from IPv6
              Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
              April 2011, <http://www.rfc-editor.org/info/rfc6146>.

   [RFC6269]  Ford, M., Ed., Boucadair, M., Durand, A., Levis, P., and
              P. Roberts, "Issues with IP Address Sharing", RFC 6269,
              DOI 10.17487/RFC6269, June 2011,
              <http://www.rfc-editor.org/info/rfc6269>.

   [RFC6455]  Fette, I. and A. Melnikov, "The WebSocket Protocol",
              RFC 6455, DOI 10.17487/RFC6455, December 2011,
              <http://www.rfc-editor.org/info/rfc6455>.

   [RFC6709]  Carpenter, B., Aboba, B., Ed., and S. Cheshire, "Design
              Considerations for Protocol Extensions", RFC 6709,
              DOI 10.17487/RFC6709, September 2012,
              <http://www.rfc-editor.org/info/rfc6709>.

   [RFC7021]  Donley, C., Ed., Howard, L., Kuarsingh, V., Berg, J., and
              J. Doshi, "Assessing the Impact of Carrier-Grade NAT on
              Network Applications", RFC 7021, DOI 10.17487/RFC7021,
              September 2013, <http://www.rfc-editor.org/info/rfc7021>.

   [RFC7228]  Bormann, C., Ersue, M., and A. Keranen, "Terminology for
              Constrained-Node Networks", RFC 7228,
              DOI 10.17487/RFC7228, May 2014,
              <http://www.rfc-editor.org/info/rfc7228>.

   [RFC7230]  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
              Protocol (HTTP/1.1): Message Syntax and Routing",
              RFC 7230, DOI 10.17487/RFC7230, June 2014,
              <http://www.rfc-editor.org/info/rfc7230>.

   [RFC7301]  Friedl, S., Popov, A., Langley, A., and E. Stephan,
              "Transport Layer Security (TLS) Application-Layer Protocol
              Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
              July 2014, <http://www.rfc-editor.org/info/rfc7301>.

   [RFC7305]  Lear, E., Ed., "Report from the IAB Workshop on Internet
              Technology Adoption and Transition (ITAT)", RFC 7305,
              DOI 10.17487/RFC7305, July 2014,
              <http://www.rfc-editor.org/info/rfc7305>.

   [RFC7540]  Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
              Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
              DOI 10.17487/RFC7540, May 2015,
              <http://www.rfc-editor.org/info/rfc7540>.



Thaler                  Expires September 9, 2017              [Page 13]

Internet-Draft           Planning for Transition              March 2017


   [RFC7541]  Peon, R. and H. Ruellan, "HPACK: Header Compression for
              HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
              <http://www.rfc-editor.org/info/rfc7541>.

   [RFC7754]  Barnes, R., Cooper, A., Kolkman, O., Thaler, D., and E.
              Nordmark, "Technical Considerations for Internet Service
              Blocking and Filtering", RFC 7754, DOI 10.17487/RFC7754,
              March 2016, <http://www.rfc-editor.org/info/rfc7754>.

   [TR46]     Unicode Consortium, "Unicode IDNA Compatibility
              Processing", June 2015,
              <http://www.unicode.org/reports/tr46/>.

   [TSV2007]  Sridharan, M., Bansal, D., and D. Thaler, "Implementation
              Report on Experiences with Various TCP RFCs", Proceedings
              of IETF 68, March 2007,
              <http://www.ietf.org/proceedings/68/slides/tsvarea-3/
              sld1.htm>.

Appendix A.  Case Studies

   Appendix A of [RFC5218] describes a number of case studies that are
   relevant to this document and highlight various transition problems
   and strategies (see for instance the Inter-Domain Multicast case
   study in Section A.4 of [RFC5218]).  We now include several
   additional case studies that focus on transition problems and
   strategies.  Many other equally good case studies could have been
   included, but, in the interests of brevity, only a sampling is
   included here that is sufficient to justify the conclusions in the
   body of this document.

A.1.  Explicit Congestion Notification

   Explicit Congestion Notification (ECN) is a mechanism to replace loss
   as the only signal for the detection of congestion, with an explicit
   signal sent from a router to the recipient of a packet, then
   reflected back to the sender.  It was standardized in 2000 in
   [RFC3168], and the mechanism consists of two parts: congestion
   detection in the IP layer, reusing two bits of the old IP Type of
   Service (TOS) field, and congestion feedback in the transport layer.
   Feedback in TCP uses two TCP flags, ECN Echo and Congestion Window
   Reduced.  Together with a suitably configured active queue management
   (AQM), ECN can improve TCP performance on congested links.

   The deployment of ECN is a case study in failed transition followed
   by possible redemption.  Initial deployment of ECN in the early and
   mid 2000s led to severe problems with some network equipment,
   including home router crashes and reboots when packets with ECN IP or



Thaler                  Expires September 9, 2017              [Page 14]

Internet-Draft           Planning for Transition              March 2017


   TCP flags was received [TSV2007].  This led to firewalls stripping
   ECN IP and TCP flags, or even dropping packets with these flags set.
   This stalled deployment.  The need for both endpoints (to negotiate
   and support ECN) and on-path devices (to mark traffic when congestion
   occurs) to cooperate in order to see any benefits from ECN deployment
   was a further issue.  The deployment of ECN across the Interent had
   failed.

   In the late 2000s, Linux and Windows servers began defaulting to
   "passive ECN support", meaning they would negotiate ECN if asked by
   the client, but would not ask to negotiate ECN by default.  This
   decision was regarded as without risk: only if a client were
   explicitly configured to negotiate ECN would any possible
   connectivity problems surface.  Gradually, this has increased server
   support in the Internet from near zero in 2008, to 11% of the top
   million Alexa webservers in 2011, to 30% in 2012, to 65% in late
   2014.  In the meantime, the risk to connectivity of ECN negotiation
   has reduced dramatically [PAM2015], leading to ongoing work to make
   Windows, Apple iOS, OSX, and Linux clients negotiate ECN by default.
   It is hoped that a critical mass of clients and servers negotiating
   ECN will provide an incentive to mark congestion on ECN-enabled
   traffic, thus breaking the logjam.

A.2.  Internationalized Domain Names

   The deployment of Internationalized Domain Names (IDN) has a long and
   complicated history.  This should not be surprising, since
   internationalization deals with language and cultural issues
   regarding differing expectations of users around the world, thus
   making it inherently difficult to agree on common rules.
   Furthermore, because human languages evolve and change over time,
   even if common rules can be established, there is likely to be a need
   to review and update them regularly.

   There have been multiple technical transitions related to IDNs,
   including the introduction of non-ASCII in DNS, the transition to
   each new version of Unicode, and the transition from IDNA 2003 to
   IDNA 2008.  A brief history of the introduction of non-ASCII in DNS
   and the various complications that arose therein, can be found in
   section 3 of [RFC6055].  While IDNA 2003 was limited to Unicode
   version 3.2 only, one of the IDNA 2008 changes was to decouple its
   rules from any particular version of Unicode (see [RFC5894],
   especially section 1.4, for more discussion of this point, and see
   [RFC4690] for a list of other issues with IDNA 2003 that motivated
   IDNA 2008).  However, the transition from IDNA 2003 to IDNA 2008
   itself presented a problem since IDNA 2008 did not preserve backwards
   compatibility with IDNA 2003 for a couple of codepoints.
   Investigations and discussions with affected parties led to the IETF



Thaler                  Expires September 9, 2017              [Page 15]

Internet-Draft           Planning for Transition              March 2017


   ultimately choosing IDNA 2008 because the overall gain by moving to
   IDNA 2008 to fix the problems with IDNA 2003 was seen to be much
   greater than the problems due to the few incompatibilities at the
   time of the change, as not many IDNs were in use, and even fewer that
   might see incompatibilities.

   A couple of browser vendors in particular were concerned about the
   differences between IDNA 2003 and IDNA 2008, and the fact that if a
   browser stopped being able to get to some site, or unknowingly sent a
   user to a different (e.g., phishing) site instead, the browser would
   be blamed.  As such, any user-perceivable change from IDNA 2003
   behavior would be painful to the vendor to deal with, and hence they
   could not depend on solutions that would need action by other
   entities.

   Thus, to deal with issues like such incompatibilities, some
   applications and client-side frameworks wanted to map one string into
   another (namely, a string that would give the same result as when
   IDNA 2003 was used) before invoking DNS.

   To provide such mapping (and some other functioanlity), the Unicode
   Consortium published [TR46] that continued down the path of IDNA 2003
   with a code point by code point selection mechanism.  This was
   implemented by some, but never adopted by the IETF.

   Meanwhile, the IETF did not publish any mapping mechanism, but
   [RFC5895] was published on the Independent Submission stream.  In
   discussions around mapping, one of the key topics was about how long
   the transition should last.  At one end of the duration spectrum is a
   flag day where some entities would be broken initially but the change
   would happen before IDN usage became even more ubiquitous.  At the
   other end of the spectrum is the need to maintain mappings
   indefinitely.  Local incentives at each entity who needed to change,
   however, meant that a short timeframe was impractical.

   There are many affected types of entities with very different
   incentives.  For example, the incentives affecting browser vendors,
   registries, domain name marketers and applicants, app developers, and
   protocol designers are each quite different, and the various
   solutions require changes by multiple types of entities, where the
   benefits do not always align with the costs.  If there is some group
   (or even an individual) that is opposed to a change/transition and
   able to put significant resources behind their opposition,
   transitions get a lot harder.

   Finally, there are multiple naming contexts, and the protocol
   behavior (including how internationalized domain names are handled)
   within each naming context can be different.  Hence applications and



Thaler                  Expires September 9, 2017              [Page 16]

Internet-Draft           Planning for Transition              March 2017


   frameworks often encounter a variety of behaviors and may or may not
   be designed to deal with them.  See sections 2 and 3 of [RFC6055] for
   more discussion.

   In summary, all this diversity can cause problems for each affected
   entity, especially if a competitor does not have such a problem,
   e.g., for browser vendors if competing browsers do not have the same
   problems, or for an email server provider if competing server
   providers do not have the same problems.

A.3.  IPv6

   Twenty-one years after publication of [RFC1883], the transition to
   IPv6 is still in progress.  The first document to describe a
   transition plan ([RFC1933], later obsoleted by [RFC2893]) was
   published less than a year after the protocol itself.  It recommended
   co-existence (dual-stack or tunneling technology) with the
   expectation that over time, all hosts would have IPv6, and IPv4 could
   be quietly retired.

   In the early stages, deployment was limited to peer-to-peer uses,
   tunneled over IPv4 networks.  For example, Teredo [RFC4380] aligned
   the cost of fixing the problem with the benefit, and allowed for
   incremental benefits to those who used it.

   Operating System vendors had incentives because with such tunneling
   protocols, they could get peer-to-peer apps working without depending
   on any infrastructure changes.  That resulted in the main apps using
   IPv6 being in the peer-to-peer category (BitTorrent, Xbox gaming,
   etc.).

   Router vendors had some incentive because IPv6 could be used within
   an intra-domain network more efficiently than tunneling, once the OS
   vendors already had IPv6 support and some special-purpose apps
   existed.

   For content providers and ISPs, on the other hand, there was little
   incentive for deployment: there was no incremental benefit to
   deploying locally.  Since everyone already had IPv4, there was no
   network effect benefit to deploying IPv6.  Even as proponents argued
   that workarounds to extend the life of IPv4--such as CIDR, NAT, and
   stingy allocations--made it more complex, IPv4 continued to work well
   enough for most applications.

   Workarounds to NAT problems documented in [RFC6269] and [RFC7021]
   included ICE, STUN, and TURN, technologies that allowed those
   experiencing the problems to deploy technologies to resolve them.  As
   with end-to-end IPv6 tunneling (e.g., Teredo), the incentives there



Thaler                  Expires September 9, 2017              [Page 17]

Internet-Draft           Planning for Transition              March 2017


   aligned the cost of fixing the problem with the benefit, and allowed
   for incremental benefits to those who used them.  The IAB discussed
   NAT technology proposals [RFC3424] and recommended they be considered
   short-term fixes, and said that proposals must include an exit plan,
   such that they would decline over time.  In particular, the IAB
   warned against generalizing NAT solutions, which would lead to
   greater dependence on them.  In some ways, these solutions, along
   with other IPv4 development (e.g., the workarounds above, and
   retrofitting IPsec into IPv4) continued to reduce the incentive to
   deploy IPv6.

   Some early advocates overstated the benefits of IPv6, suggesting that
   it had better security (because IPsec was required) or that NAT was
   worse than it often appeared to be or that IPv4 exhaustion would
   happen years sooner than it actually did.  Some people pushed back on
   these exaggerations, and decided that the protocol itself somehow
   lacked credibility.

   Not until a few years after IPv4 runout in various Regional Address
   Registry (RIR) regions did IPv6 deployment significantly increase.
   The RIRs had been advocating in their communities for IPv6 for some
   time, reducing fees for IPv6, and in some cases providing training;
   there is little to suggest that these had a significant effect.  The
   RIRs and others conducted surveys of different industries and
   industry segments to learn why people did not deploy IPv6
   [IPv6Survey2011] [IPv6Survey2015], which commonly listed lack of a
   business case, lack of training, and lack of vendor support as
   primary hurdles.

   Arguably forward-looking companies collaborated, with ISOC, on World
   IPv6 Day and World IPv6 Launch to jump start global IPv6 deployment.
   By including multiple competitors, World IPv6 Day reduced the risk
   that any of them would lose customers if a user's IPv6 implementation
   was broken.  World IPv6 Launch then set a goal for content providers
   to permanently enable IPv6, and for large ISPs to enable IPv6 for at
   least 1% of end users.  These large, visible deployments gave vendors
   specific features and target dates to support IPv6 well.  Key aspects
   of World IPv6 Day and World IPv6 Launch that contributed to their
   successes (measured as increased deployment of IPv6) were the
   communication through ISOC, and that measurement metrics and
   contingency plans that were announced in advance.

   Several efforts have been made to mitigate the lack of a business
   case.  Some governments (South Korea, Japan) provided tax incentives
   to include IPv6.  Other governments (Belgium, Singapore) mandated
   IPv6 support by private companies.  Few of these had enough value to
   drive significant IPv6 deployment.




Thaler                  Expires September 9, 2017              [Page 18]

Internet-Draft           Planning for Transition              March 2017


   The concern about lack of training is often a common issue in
   transitions.  Because IPv4 is so ubiquitous, its use is routine and
   simplified with common tools, and it is taught in network training
   everywhere.  While IPv6 deployment was low, ignorance of it was no
   obstacle to being hired as a network administrator or developer.

   Organizations with the greatest incentives to deploy IPv6 are those
   which continue to grow quickly, even after IPv4 free pool exhaustion.
   Thus, ISPs have had varying levels of commitment, based on the growth
   of their user base, services being added (especially video over IP),
   and the number of IPv4 addresses they had available.  Cloud-based
   providers, including CDN and hosting companies, have been major
   buyers of IPv4 addresses, and several have been strong deployers and
   advocates of IPv6.

   Different organizations will use different transition models for
   their networks, based on their needs.  Some are electing to use
   IPv6-only hosts in the network with IPv6-IPv4 translation at the
   edge.  Others are using dual-stack hosts with IPv6-only routers in
   the core of the network, and IPv4 tunneled or translated through them
   to dual-stack edge routers.  Still others are using native dual-stack
   throughout the network, but that generally persists as an interim
   measure: adoption of two technologies is not the same as
   transitioning from one technology to another.  Finally, some walled
   gardens or isolated networks, such as management networks, use
   IPv6-only end-to-end.

   It is impossible to predict with certainty the path IPv6 deployment
   will have taken when it is complete.  Lessons learned so far include
   aligning costs and benefits (incentive), and ensuring incremental
   benefit (network effect, or backward compatibility).

A.4.  HTTP

   HTTP has been through several transitions as a protocol.

   The first version [HTTP0.9] was extremely simple, with no headers,
   status codes, or explicit versioning.  HTTP/1.0 [RFC1945] introduced
   these and a number of other concepts; it succeeded mostly because
   deployment of HTTP was still relatively new, with a small pool of
   implementers and (comparatively) small set of deployments and users.

   HTTP/1.1 (first defined in [RFC2068]) was an attempt to make the
   protocol suitable for the massive scale it was being deployed upon,
   and to introduce some new features.

   HTTP/2 [RFC7540] was largely aimed at improving performance.  The
   primary improvement was the introduction of request multiplexing,



Thaler                  Expires September 9, 2017              [Page 19]

Internet-Draft           Planning for Transition              March 2017


   which is supported by request prioritization and flow control.  It
   also introduced header compression [RFC7541] and binary framing; this
   made it completely backwards incompatible on the wire, but still
   semantically compatible with previous versions of the protocol.

A.4.1.  Protocol Versioning, Extensions and 'Grease'

   During the development of HTTP/1.1, there was a fair amount of
   confusion regarding the semantics of HTTP version numbers, resulting
   in [RFC2145].  Later, it was felt that minor versioning in the
   protocol caused more confusion than it was worth, and so HTTP/2.0
   became HTTP/2.

   This decision was informed by the observation that many
   implementations ignored the major version number of the protocol, or
   misinterpreted it.  As is the case with many protocol extension
   points, HTTP versioning had failed to be "greased" by use often
   enough, and so had become "rusted" so that only a limited range of
   values could interoperate.

   This phenomenon has been observed in other protocols, such as TLS (as
   exemplified by [I-D.ietf-tls-grease]), and there are active efforts
   to identify extension points that are in need of such "grease" and
   making it appear as if they are in use.

   Besides the protocol version, HTTP's extension points that are well-
   greased include header fields, status codes, media types and cache-
   control extensions; HTTP methods, content-encodings and chunk-
   extensions enjoy less flexibility, and need to be extended more
   cautiously.

A.4.2.  Limits on Changes in Major Versions

   Each update to the "major" version of HTTP has been accompanied by
   changes that weren't compatible with previous versions.  This was not
   uniformly successful given the diversity and scale of deployment and
   implementations.

   HTTP/1.1 introduced pipelining to improve protocol efficiency.
   Although it did enjoy implementation, interoperability did not
   follow.

   This was partially because many existing implementations had chosen
   architectures that did not lend themselves to supporting it;
   pipelining was not uniformly implemented and where it was, support
   was sometimes incorrect or incomplete.  Since support for pipelining
   was indicated by the protocol version number itself, interop was




Thaler                  Expires September 9, 2017              [Page 20]

Internet-Draft           Planning for Transition              March 2017


   difficult to achieve, and furthermore its inability to completely
   address head of line blocking issues made pipelining unattractive.

   Likewise, HTTP/1.1's Expect/Continue mechanism relied on wide support
   for the new semantics it introduced, and did not have an adequate
   fallback strategy for previous versions of the protocol.  As a
   result, interoperability and deployment suffered, and is still
   considered a "problem area" for the protocol.

   More recently, the HTTP working group decided that HTTP/2 represented
   an opportunity to improve security, making the protocol much stricter
   than previous versions about the use of TLS.  To this end, a long
   list of TLS cipher suites were prohibited, constraints were placed on
   the key exchange method, and renegotiation was prohibited.

   This did cause deployment problems.  Though most were minor and
   transitory, disabling renegotiation caused problems for deployments
   that relied on the feature to authenticate clients and prompted new
   work to replace the feature.

   A number of other features or characteristics of HTTP were identified
   as potentially undesirable as part of the HTTP/2 process and
   considered for removal.  This included trailers, the 1xx series of
   responses, certain modes of request forms, and the unsecured
   (http://) variant of the protocol.

   For each of these, the risk to the successful deployment of the new
   version was considered to be too great to justify removing the
   feature.  However, deployment of the unsecured variant of HTTP/2
   remains extremely limited.

A.4.3.  Planning for Replacement

   HTTP/1.1 provided the Upgrade header field to enable transitioning a
   connection to an entirely different protocol.  So far, this has been
   little-used, other than to enable the use of WebSockets [RFC6455].

   With performance being a primary motivation for HTTP/2, a new
   mechanism was needed to avoid spending an additional round trip on
   protocol negotiation.  A new mechanism was added to TLS to permit the
   negotiation of the new version of HTTP: Application Layer Protocol
   Negotiation (ALPN) [RFC7301].  Upgrade was used only for the
   unsecured variant of the protocol.

   ALPN was identified as the primary way in which future protocol
   versions would be negotiated.  The mechanism was well-tested during
   development of the specification, proving that new versions could be
   deployed safely and easily.  Several draft versions of the protocol



Thaler                  Expires September 9, 2017              [Page 21]

Internet-Draft           Planning for Transition              March 2017


   were successfully deployed during development, and version
   negotiation was never shown to be an issue.

   Confidence that new versions would be easy to deploy if necessary
   lead to a particular design stance that might be considered unusual
   in light of the advice in [RFC5218], though is completely consistent
   with [RFC6709]: few extension points were added, unless an immediate
   need was understood.

   This decision was made on the basis that it would be easier to revise
   the entire protocol than it would be to ensure that an extension
   point was correctly specified and implemented such that it would be
   available when needed.

Author's Address

   Dave Thaler (editor)
   Microsoft
   One Microsoft Way
   Redmond, WA  98052
   US

   Email: dthaler@microsoft.com




























Thaler                  Expires September 9, 2017              [Page 22]