Internet DRAFT - draft-ietf-decade-arch
draft-ietf-decade-arch
DECADE R. Alimi
Internet-Draft Google
Intended status: Informational A. Rahman
Expires: August 11, 2013 InterDigital Communications, LLC
D. Kutscher
NEC
Y. Yang
Yale University
H. Song
K. Pentikousis
Huawei
February 7, 2013
DECADE Protocol
draft-ietf-decade-arch-10
Abstract
Content Distribution Applications (e.g., P2P applications) are widely
used on the Internet and make up a large portion of the traffic in
many networks. One technique to improve the network efficiency of
these applications is to introduce storage capabilities within the
networks; this is the capability provided by a DECADE (DECoupled
Application Data Enroute) compatible system. This document presents
an architecture, discusses the underlying principles, and identifies
key functionalities in the architecture for introducing a DECADE in-
network storage system. In addition, some examples are given to
illustrate these concepts.
Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
Status of this Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
Alimi, et al. Expires August 11, 2013 [Page 1]
Internet-Draft DECADE Protocol February 2013
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on August 11, 2013.
Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Alimi, et al. Expires August 11, 2013 [Page 2]
Internet-Draft DECADE Protocol February 2013
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4
3. Protocol Flow . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2. An Example . . . . . . . . . . . . . . . . . . . . . . . . 5
4. Architectural Principles . . . . . . . . . . . . . . . . . . . 6
4.1. Decoupled Control/Metadata and Data Planes . . . . . . . . 6
4.2. Immutable Data Objects . . . . . . . . . . . . . . . . . . 7
4.3. Data Objects With Identifiers . . . . . . . . . . . . . . 8
4.4. Explicit Control . . . . . . . . . . . . . . . . . . . . . 9
4.5. Resource and Data Access Control through Delegation . . . 10
5. System Components . . . . . . . . . . . . . . . . . . . . . . 11
5.1. Content Distribution Application . . . . . . . . . . . . . 11
5.2. DECADE Server . . . . . . . . . . . . . . . . . . . . . . 13
5.3. Data Sequencing and Naming . . . . . . . . . . . . . . . . 15
5.4. Token-based Authorization and Resource Control . . . . . . 16
5.5. Discovery . . . . . . . . . . . . . . . . . . . . . . . . 17
6. DECADE Protocols . . . . . . . . . . . . . . . . . . . . . . . 18
6.1. DECADE Naming . . . . . . . . . . . . . . . . . . . . . . 18
6.2. DECADE Resource Protocol (DRP) . . . . . . . . . . . . . . 19
6.3. Standard Data Transfer (SDT) Protocol . . . . . . . . . . 23
6.4. Server-to-Server Protocols . . . . . . . . . . . . . . . . 24
7. Security Considerations . . . . . . . . . . . . . . . . . . . 25
7.1. Threat: System Denial of Service Attacks . . . . . . . . . 25
7.2. Threat: Protocol Security . . . . . . . . . . . . . . . . 26
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 27
9. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 27
10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 28
10.1. Normative References . . . . . . . . . . . . . . . . . . . 28
10.2. Informative References . . . . . . . . . . . . . . . . . . 28
Appendix A. In-Network Storage Components Mapped to DECADE
Architecture . . . . . . . . . . . . . . . . . . . . 29
A.1. Data Access Interface . . . . . . . . . . . . . . . . . . 29
A.2. Data Management Operations . . . . . . . . . . . . . . . . 29
A.3. Data Search Capability . . . . . . . . . . . . . . . . . . 29
A.4. Access Control Authorization . . . . . . . . . . . . . . . 29
A.5. Resource Control Interface . . . . . . . . . . . . . . . . 30
A.6. Discovery Mechanism . . . . . . . . . . . . . . . . . . . 30
A.7. Storage Mode . . . . . . . . . . . . . . . . . . . . . . . 30
Appendix B. Hisotry . . . . . . . . . . . . . . . . . . . . . . . 30
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 30
Alimi, et al. Expires August 11, 2013 [Page 3]
Internet-Draft DECADE Protocol February 2013
1. Introduction
Content Distribution Applications, such as Peer-to-Peer (P2P)
applications, are widely used on the Internet to distribute data, and
they contribute a large portion of the traffic in many networks. The
architecture described in this document enables such applications to
leverage in-network storage to achieve more efficient content
distribution (i.e. DECADE system). Specifically, in many subscriber
networks, it can be expensive to upgrade network equipment in the
"last-mile", because it can involve replacing equipment and upgrading
wiring at individual homes, businesses, and devices such as DSLAMs
(Digital Subscriber Line Access Multiplexers) and CMTSs (Cable Modem
Termination Systems) in remote locations. Therefore, it may be
cheaper to upgrade the core infrastructure, which involves fewer
components that are shared by many subscribers. See [RFC6646] for a
more complete discussion of the problem domain and general
discussions of the capabilities to be provided by a DECADE system.
This document presents an architecture for providing in-network
storage that can be integrated into Content Distribution
Applications. The primary focus is P2P-based content distribution,
but the architecture may be useful to other applications with similar
characteristics and requirements. See [I-D.ietf-decade-reqs] for a
definition of the target applications as well as the requirements for
a DECADE system.
The approach of this document is to define the core functionalities
and protocol functions that are needed to support a DECADE system.
The specific protocols are not selected or designed in this document.
Some illustrative examples are given to help the reader understand
certain concepts. These examples are purely informational and are
not meant to constrain future protocol design or selection.
2. Terminology
This document assumes readers are familiar with the terms and
concepts that are used in [RFC6646] and [I-D.ietf-decade-reqs].
3. Protocol Flow
3.1. Overview
Following[I-D.ietf-decade-reqs], the architecture consists of two
protocols: the DECADE Resource Protocol (DRP) that is responsible for
communication of access control and resource scheduling policies from
a client to a server, as well as between servers; and Standard Data
Alimi, et al. Expires August 11, 2013 [Page 4]
Internet-Draft DECADE Protocol February 2013
Transfer (SDT) protocol(s) that will be used to transfer data objects
to and from a server. We show the protocol components figure below:
Native Application
.-------------. Protocol(s) .-------------.
| Application | <------------------> | Application |
| End-Point | | End-Point |
| | | |
| .--------. | | .--------. |
| | DECADE | | | | DECADE | |
| | Client | | | | Client | |
| `--------' | | `--------' |
`-------------' `-------------'
| ^ | ^
DECADE | | Standard | |
Resource | | Data DRP | | SDT
Protocol | | Transfer | |
(DRP) | | (SDT) | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
v V v V
.=============. DRP .=============.
| DECADE | <------------------> | DECADE |
| Server | <------------------> | Server |
`=============' SDT `============='
Figure 1: Generic Protocol Flow
3.2. An Example
This section provides an example showing the steps in the
architecture for a data transfer scenario involving an in-network
storage system. We assume that Application End-Point B (the
receiver) is requesting a data object from Application End-Point A
(the sender). Let S(A) denote the DECADE storage server to which A
has access. There are multiple usage scenarios (by choice of the
Content Distribution Application). For simplicity of introduction,
we design this example to use only a single DECADE server.
The steps of the example are illustrated in Figure 2. First, B
requests a data object from A using their native application protocol
(see Section 5.1.2). Next, A uses the DRP to obtain a token. There
are multiple ways for A to obtain the token: compute locally, or
request from its DECADE storage server, S(A). See Section 6.2.2 for
Alimi, et al. Expires August 11, 2013 [Page 5]
Internet-Draft DECADE Protocol February 2013
details. A then provides the token to B (again, using their native
application protocol). Finally, B provides the token to S(A) via
DRP, and requests and downloads the data object via a SDT.
.----------.
2. Obtain --------> | S(A) | <------
Token / `----------' \ 4. Request and
(DRP) / \ Download Data
Locally / \ Object
or From / \ (DRP + SDT)
S(A) v 1. App Request v
.-------------. <--------------------------- .-------------.
| Application | | Application |
| End-Point A | | End-Point B |
`-------------' ---------------------------> `-------------'
3. App Response (token)
Figure 2: Download from Storage Server
4. Architectural Principles
We identify the following key principles that will be followed in any
DECADE system:
4.1. Decoupled Control/Metadata and Data Planes
A DECADE system SHOULD be able to support multiple Content
Distribution Applications. A complete Content Distribution
Application implements a set of "control plane" functions including
content search, indexing and collection, access control, replication,
request routing, and QoS scheduling. Different Content Distribution
Applications will have unique considerations designing the control
plane functions:
o Metadata Management Scheme: Traditional file systems provide a
standard metadata abstraction: a recursive structure of
directories to offer namespace management; each file is an opaque
byte stream. Content Distribution Applications may use different
metadata management schemes. For example, one application might
use a sequence of blocks (e.g., for file sharing), while another
application might use a sequence of frames (with different sizes)
indexed by time.
o Resource Scheduling Algorithms: A major advantage of many
successful P2P systems is their substantial expertise in achieving
highly efficient utilization of peer and infrastructural
Alimi, et al. Expires August 11, 2013 [Page 6]
Internet-Draft DECADE Protocol February 2013
resources. For instance, many streaming P2P systems have their
specific algorithms in constructing topologies to achieve low-
latency, high-bandwidth streaming. They continuously fine-tune
such algorithms.
Given the diversity of control plane functions, a DECADE system
SHOULD allow as much flexibility as possible to the control plane to
implement specific policies. This conforms to the end-to-end systems
principle and allows innovation and satisfaction of specific
performance goals.
Decoupling control plane and data plane is not new. For example,
OpenFlow [OpenFlow] is an implementation of this principle for
Internet routing, where the computation of the forwarding table and
the application of the forwarding table are separated. Google File
System [GoogleFileSystem] applies the principle to file system
design, by utilizing the Master to handle the meta-data management,
and the Chunk servers to handle the data plane functions (i.e., read
and write of chunks of data). NFSv4.1's pNFS extension [RFC5661]
also implements this principle.
4.2. Immutable Data Objects
A property of bulk content to be broadly distributed is that they
typically are immutable -- once content is generated, it is typically
not modified. It is not common that bulk content such as video
frames and images need to be modified after distribution.
Focusing on immutable data in the data plane can substantially
simplify the data plane design, since consistency requirements can be
relaxed. It also simplifies reuse of data and implementation of de-
duplication.
Depending on its specific requirements, an application may store
immutable data objects in DECADE servers such that each data object
is completely self-contained (e.g., a complete, independently
decodable video segment). An application may also divide data into
data objects that require application level assembly. Many Content
Distribution Applications divide bulk content into data objects for
multiple reasons, including (1) fetching different data objects from
different sources in parallel; and (2) faster recovery and
verification: individual data objects might be recovered and
verified. Typically, applications use a data object size larger than
a single packet in order to reduce control overhead.
A DECADE system SHOULD be agnostic to the nature of the data objects
and SHOULD NOT specify a fixed size for them. A protocol
specification based on this architecture MAY prescribe requirements
Alimi, et al. Expires August 11, 2013 [Page 7]
Internet-Draft DECADE Protocol February 2013
on minimum and maximum sizes by compliant implementations.
Immutable data objects can still be deleted. Applications may
support modification of existing data stored at a DECADE server
through a combination of storing new data objects and deleting
existing data objects. For example, a meta-data management function
of the control plane might associate a name with a sequence of
immutable data objects. If one of the data objects is modified, the
meta-data management function changes the mapping of the name to a
new sequence of immutable data objects.
Throughout this document, all data objects are assumed to be
immutable.
4.3. Data Objects With Identifiers
An object that is stored in a DECADE storage server SHALL be accessed
by Content Consumers via a data object identifier.
A Content Consumer may be able to access more than one storage
server. A data object that is replicated across different storage
servers managed by a DECADE Storage Provider MAY still be accessed by
a single identifier.
Since data objects are immutable, it SHALL be possible to support
persistent identifiers for data objects.
Data object identifiers for data objects SHOULD be created by Content
Providers that upload the objects to servers. We refer to a scheme
for the assignment/derivation of the data object identifier to a data
object depends as the data object naming scheme. The details of data
naming schemes will be provided by future DECADE protocol/naming
specifications. This document describes naming schemes on a semantic
level and specific SDTs and DRPs SHOULD use specific representations.
In particular, for some applications it is important that clients and
servers SHOULD be able to validate the name-object binding for a data
object, i.e., by verifying that a received object really corresponds
to the name (identifier) that was used for requesting it (or that was
provided by a sender). Data object identifiers can support name-
object binding validation by providing message digests or so-called
self-certifying naming information -- if a specific application has
this requirement.
A DECADE naming scheme follows the following general requirements:
o Different name-object binding validation mechanisms MAY be
supported;
Alimi, et al. Expires August 11, 2013 [Page 8]
Internet-Draft DECADE Protocol February 2013
o Content Distribution Applications will decide what mechanism to
use, or to not provide name-object validation (e.g., if
authenticity and integrity can by ascertained by alternative
means);
o Applications MAY be able to construct unique names (with high
probability) without requiring a registry or other forms of
coordination; and
o Names MAY be self-describing so that a receiving entity (Content
Consumer) knows what hash function (for example) to use for
validating name-object binding.
Some Content Distribution Applications will derive the name of a data
object from the hash over the data object, which is made possible by
the fact that DECADE objects are immutable. But there may be other
applications such as live streaming where object names will not based
on hashes but rather on an enumeration scheme. The naming scheme
will also enable those applications to construct unique names.
In order to enable the uniqueness, flexibility and self-describing
properties, the naming scheme SHOULD provide the following name
elements:
o A "type" field that indicates the name-object validation function
type (for example, "sha-256");
o Cryptographic data (such as an object hash) that corresponds to
the type information; and
The naming scheme MAY additionally provide the following name
elements:
o Application or publisher information.
The specific format of the name (e.g., encoding, hash algorithms,
etc) is out of scope of this document, and is left for protocol
specification.
4.4. Explicit Control
To support the functions of an application's control plane,
applications SHOULD be able to know and coordinate which data is
stored at particular servers. Thus, in contrast with traditional
caches, applications are given explicit control over the placement
(selection of a DECADE server), deletion (or expiration policy), and
access control for stored data.
Alimi, et al. Expires August 11, 2013 [Page 9]
Internet-Draft DECADE Protocol February 2013
Consider deletion/expiration policy as a simple example. An
application might require that a server stores data objects for a
relatively short period of time (e.g., for live-streaming data).
Another application might need to store data objects for a longer
duration (e.g., for video-on-demand).
4.5. Resource and Data Access Control through Delegation
A DECADE system will provide a shared infrastructure to be used by
multiple Content Consumers and Content Providers spanning multiple
Content Distribution Applications. Thus, it needs to provide both
resource and data access control.
4.5.1. Resource Allocation
There are two primary interacting entities in a DECADE system.
First, Storage Providers SHOULD coordinate where storage servers are
provisioned and their total available resources Section 6.2.1.
Second, Applications will coordinate data transfers amongst available
servers and between servers and clients. A form of isolation is
required to enable concurrently-running Applications to each
explicitly manage its own data objects and share of resources at the
available servers.
The Storage Provider SHOULD delegate the management of the resources
on a server to Content Providers. This means that Content Providers
are able to explicitly and independently manage their own shares of
resources on a server.
4.5.2. User Delegations
Storage Providers will have the ability to explicitly manage the
entities allowed to utilize the resources at a DECADE server. This
capability is needed for reasons such as capacity-planning and legal
considerations in certain deployment scenarios.
The server SHOULD grant a share of the resources to a Content
Provider or Content Consumer. The client can in turn share the
granted resources amongst its multiple applications. The share of
resources granted by a server is called a User Delegation.
As a simple example, a DECADE server operated by an ISP might be
configured to grant each ISP Subscriber 1.5 Mbit/s of bandwidth. The
ISP Subscriber might in turn divide this share of resources amongst a
video streaming application and file-sharing application which are
running concurrently.
Alimi, et al. Expires August 11, 2013 [Page 10]
Internet-Draft DECADE Protocol February 2013
5. System Components
The primary focus of this document is the architectural principles
and the system components that implement them. While certain system
components might differ amongst implementations, the document details
the major components and their overall roles in the architecture.
To keep the scope narrow, we only discuss the primary components
related to protocol development. Particular deployments will require
additional components (e.g., monitoring and accounting at a server),
but they are intentionally omitted from this document.
5.1. Content Distribution Application
Content Distribution Applications have many functional components.
For example, many P2P applications have components and algorithms to
manage overlay topology management, rate allocation, piece selection,
etc. In this document, we focus on the components directly employed
to support a DECADE system.
Figure 3 illustrates the components discussed in this section from
the perspective of a single Application End-Point.
Alimi, et al. Expires August 11, 2013 [Page 11]
Internet-Draft DECADE Protocol February 2013
Native Protocol(s)
(with other Application End-Points)
.--------------------->
|
|
.----------------------------------------------------------.
| Application End-Point |
| .------------. .-------------------. |
| | App-Layer | ... | App Data Assembly | |
| | Algorithms | | Sequencing | |
| `------------' `-------------------' |
| |
| .------------------------------------------------------. |
| | DECADE Client | |
| | | |
| | .-------------------------. .----------------------. | |
| | | Resource Controller | | Data Controller | | |
| | | .--------. .----------. | | .--------. .-------. | | |
| | | | Data | | Resource | | | | Data | | Data | | | |
| | | | Access | | Sharing | | | | Sched. | | Index | | | |
| | | | Policy | | Policy | | | | | | | | | |
| | | '--------' `----------' | | `--------' `-------' | | |
| | `-------------------------' `----------------------' | |
| | | ^ | |
| `------------ | ----------------- | -------------------' |
`-------------- | ----------------- | ---------------------'
| |
| DECADE | Standard
| Resource | Data
| Protocol | Transfer
| (DRP) | (SDT)
v V
Figure 3: Application Components
5.1.1. Data Assembly
A DECADE system is geared towards supporting applications that can
distribute content using data objects. To accomplish this,
applications can include a component responsible for creating the
individual data objects before distribution and then re-assembling
data objects at the Content Consumer. We call this component the
Application Data Assembly.
In producing and assembling the data objects, two important
considerations are sequencing and naming. A DECADE system assumes
that applications implement this functionality themselves. See
Section 6.1 for further discussion.
Alimi, et al. Expires August 11, 2013 [Page 12]
Internet-Draft DECADE Protocol February 2013
5.1.2. Native Application Protocols
In addition to the DECADE DRP/SDT, applications can also support
existing native application protocols (e.g., P2P control and data
transfer protocols).
5.1.3. DECADE Client
The client provides the local support to an application, and can be
implemented standalone, embedded into the application, or integrated
in other entities such as network devices themselves.
5.1.3.1. Resource Controller
Applications may have different Resource Sharing Policies and Data
Access Policies to control their resource and data in DECADE servers.
These policies may be existing policies of applications or custom
policies. The specific implementation is decided by the application.
5.1.3.2. Data Controller
A DECADE system decouples the control and the data transfer of
applications. A Data Scheduling component schedules data transfers
according to network conditions, available servers, and/or available
server resources. The Data Index indicates data available at remote
servers. The Data Index (or a subset of it) can be advertised to
other clients. A common use case for this is to provide the ability
to locate data amongst distributed Application End-Points (i.e., a
data search mechanism such as a Distributed Hash Table).
5.2. DECADE Server
Figure 4 illustrates the components discussed in a DECADE server. A
server is not necessarily a single physical machine, it can also be
implemented as a cluster of machines.
Alimi, et al. Expires August 11, 2013 [Page 13]
Internet-Draft DECADE Protocol February 2013
| |
| DECADE | Standard
| Resource | Data
| Protocol | Transfer
| (DRP) | (SDT)
| |
.= | ================= | ======================.
| | v |
| | .----------------. |
| |----> | Access Control | <--------. |
| | `----------------' | |
| | ^ | |
| | | | |
| | v | |
| | .---------------------. | |
| `-> | Resource Scheduling | <------| |
| `---------------------' | |
| ^ | |
| | | |
| v .------------. |
| .-----------------. | User | |
| | Data Store | | Delegation | |
| `-----------------' | Management | |
| DECADE Server `------------' |
`=============================================='
Figure 4: DECADE Server Components
5.2.1. Access Control
A client SHALL be able to access its own data or other client's data
(provided sufficient authorization) in DECADE servers. Clients MAY
also authorize other clients to store data. If an access is
authorized by a client, the server SHOULD provide access. Even if a
request is authorized, it MAY still fail to complete due to
insufficient resources at the server.
5.2.2. Resource Scheduling
Applications will apply resource sharing policies or use a custom
policy. Servers perform resource scheduling according to the
resource sharing policies indicated by clients as well as configured
User Delegations.
5.2.3. Data Store
Data from applications will be stored at a DECADE server. Data may
be deleted from storage either explicitly or automatically (e.g.,
Alimi, et al. Expires August 11, 2013 [Page 14]
Internet-Draft DECADE Protocol February 2013
after a TTL expiration).
5.3. Data Sequencing and Naming
The DECADE naming scheme implies no sequencing or grouping of
objects, even if this is done at the application layer.
5.3.1. Application Usage Example
To illustrate these properties, this section presents multiple
examples.
5.3.1.1. Application with Fixed-Size Chunks
Similar to the example in Section 5.1.1, consider an Application in
which each individual application-layer segment of data is called a
"chunk" and has a name of the form: "CONTENT_ID:SEQUENCE_NUMBER".
Furthermore, assume that the application's native protocol uses
chunks of size 16 KiB.
Now, assume that this application wishes to store data in DECADE
servers in data objects of size 64 KiB. To accomplish this, it can
map a sequence of 4 chunks into a single data object, as shown in
Figure 5.
Application Chunks
.---------.---------.---------.---------.---------.---------.--------
| | | | | | |
| Chunk_0 | Chunk_1 | Chunk_2 | Chunk_3 | Chunk_4 | Chunk_5 | Chunk_6
| | | | | | |
`---------`---------`---------`---------`---------`---------`--------
DECADE Data Objects
.---------------------------------------.----------------------------
| |
| Object_0 | Object_1
| |
`---------------------------------------`----------------------------
Figure 5: Mapping Application Chunks to DECADE Data Objects
In this example, the Application maintains a logical mapping that is
able to determine the name of a DECADE data object given the chunks
contained within that data object. The name may be learned from
either the original Content Provider, another End-Point with which
the Application is communicating, etc. As long as the data contained
within each sequence of chunks is globally unique, the corresponding
Alimi, et al. Expires August 11, 2013 [Page 15]
Internet-Draft DECADE Protocol February 2013
data objects have globally unique names.
5.3.1.2. Application with Continuous Streaming Data
Consider an Application whose native protocol retrieves a continuous
data stream (e.g., an MPEG2 stream) instead of downloading and
redistributing chunks of data. Such an application could segment the
continuous data stream to produce either fixed-sized or variable-
sized data objects.
Figure 6 shows how a video streaming application might produce
variable-sized data objects such that each data object contains 10
seconds of video data.
Application's Video Stream
.--------------------------------------------------------------------
|
|
|
`--------------------------------------------------------------------
^ ^ ^ ^ ^
| | | | |
0 Seconds 10 Seconds 20 Seconds 30 Seconds 40 Seconds
0 B 400 KiB 900 KiB 1200 KiB 1500 KiB
DECADE Data Objects
.--------------.--------------.--------------.--------------.--------
| | | | |
| Object_0 | Object_1 | Object_2 | Object_3 |
| (400 KiB) | (500 KiB) | (300 KiB) | (300 KiB) |
`--------------`--------------`--------------`--------------`--------
Figure 6: Mapping a Continuous Data Stream to DECADE Data Objects
Similar to the previous example, the Application might maintain a
mapping that is able to determine the name of a data object given the
time offset of the video chunk.
5.4. Token-based Authorization and Resource Control
A key feature of a DECADE system is that an application endpoint can
authorize other application endpoint to store or retrieve data
objects from the in-network storage. An OAuth version 2
[RFC6749]based authorization scheme is used to accomplish this. A
separate OAuth flow is used for this purpose,
Alimi, et al. Expires August 11, 2013 [Page 16]
Internet-Draft DECADE Protocol February 2013
a client authenticates (optional and out of the scope of this
document) with the application server or the P2P application peer,
and request the trusted by the client, and the token contains
particular self contained properties (see Section 6.2.2 for details).
The client then use the token when sending requests to the DECADE
server. Upon receiving a token, the server validates the signature
and the operation being performed.
This is a simple scheme, but has some important advantages over an
alternative approach in which a client explicitly manipulates an
Access Control List (ACL) associated with each data object. In
particular, it has the following advantages when applied to DECADE
target applications:
o Authorization policies are implemented within the Application; an
Application explicitly controls when tokens are generated and to
whom they are distributed and for how long they will be valid.
o Fine-grained access and resource control can be applied to data
objects; see Section 6.2.2 for the list of restrictions that can
be enforced with a token.
o There is no messaging between a client and server to manipulate
data object permissions. This can simplify, in particular,
Applications which share data objects with many dynamic peers and
need to frequently adjust access control policies attached to data
objects.
o Tokens can provide anonymous access, in which a server does not
need to know the identity of each client that accesses it. This
enables a client to send tokens to clients belonging to other
Storage Providers, and allow them to read or write data objects
from the storage of its own Storage Provider.
In addition to clients applying access control policies to data
objects, the server MAY be configured to apply additional policies
based on user, object, geographic location, etc. A client might thus
be denied access even though it possesses a valid token.
There are existing protocols (e.g., OAuth [RFC5849]) that implement
similar referral mechanisms using tokens. A protocol specification
of this architecture SHOULD endeavor to use existing mechanisms
wherever possible.
5.5. Discovery
A DECADE system SHOULD include a discovery mechanism through which
clients locate an appropriate server. [I-D.ietf-decade-reqs] details
Alimi, et al. Expires August 11, 2013 [Page 17]
Internet-Draft DECADE Protocol February 2013
specific requirements of the discovery mechanism; this section
discusses how they relate to other principles outlined in this
document.
A discovery mechanism SHOULD allow a client to determine an IP
address or some other identifier that can be resolved to locate the
server for which the client will be authorized to generate tokens
(via DRP). (The discovery mechanism might also result in an error if
no such servers can be located.) After discovering one or more
servers, a client can distribute load and requests across them
(subject to resource limitations and policies of the servers
themselves) according to the policies of the Application End-Point in
which it is embedded.
The particular protocol used for discovery is out of scope of this
document, but any specification SHOULD re-use standard protocols
wherever possible.
The discovery mechanism outlined here does not provide the ability to
locate arbitrary DECADE servers to which a client might obtain tokens
from others. To do so will require application-level knowledge, and
it is assumed that this functionality is implemented in the Content
Distribution Application.
6. DECADE Protocols
This section presents the DRP and the SDT protocol in terms of
abstract protocol interactions that are intended to be mapped to
specific protocols. In general, the DRP/SDT functionality between a
DECADE client-server are very similar to the DRP/SDT functionality
between server-server. Any differences are highlighted below.
DRP will be the protocol used by a DECADE client to configure the
resources and authorization used to satisfy requests (reading,
writing, and management operations concerning data objects) at a
server. SDT will be used to transport data between a client and a
server.
6.1. DECADE Naming
A DECADE system SHOULD use the [I-D.farrell-decade-ni] as the
recommended and default naming scheme. Other naming schemes that
meet the guidelines in Section 4.3 may alternatively be used.
In order to provide a simple and generic interface, the DECADE server
will be responsible only for storing and retrieving individual data
objects.
Alimi, et al. Expires August 11, 2013 [Page 18]
Internet-Draft DECADE Protocol February 2013
The DECADE naming format SHOULD NOT attempt to replace any naming or
sequencing of data objects already performed by an Application;
instead, the naming is intended to apply only to data objects
referenced by DECADE-specific purposes.
An Application using a DECADE client may use a naming and sequencing
scheme independent of DECADE names. The DECADE client SHOULD
maintain a mapping from its own data objects and their names to the
DECADE-specific data objects and names. Furthermore, the DECADE
naming scheme implies no sequencing or grouping of objects, even if
this is done at the application layer.
6.2. DECADE Resource Protocol (DRP)
DRP will provide configuration of access control and resource sharing
policies on DECADE servers. A Content Distribution Application,
e.g., a live P2P streaming session, can have permission to manage
data at several servers, for instance, servers belonging to different
Storage Providers, and DRP allows one instance of such an
application, e.g., an Application End-Point, to apply access control
and resource sharing policies on each of them.
6.2.1. Controlled Resources
On a single DECADE server, the following resources SHOULD be managed:
o Communication resources in terms of bandwidth (upload/download)
and also in terms of number of active clients (simultaneous
connections).
o Storage resources.
6.2.2. Access and Resource Control Token
As in DECADE system, the resource owner agent is always the same
entity or colocated with the authorization server, so we use a
separate OAuth 2.0 request and response flow for the access and
resource control token.
An OAuth request to access the data objects MUST include the
following fields (encoding format is TBD, HTML?):
response_type: REQUIRED. Value MUST be set to "token".
client_id: the client_id indicates either the application that is
using the DECADE service or the end user who is using the DECADE
service from a DECADE storage service provider. DECADE storage
service providers MUST provide the ID distribution and management
Alimi, et al. Expires August 11, 2013 [Page 19]
Internet-Draft DECADE Protocol February 2013
function, which is out of the scope of this document.
scope: data object names that are requested.
An OAuth response includes the following information (encoding is
TBD, HTML is preferred, are we going to use OAuth Bearer token type
as defined in RFC 6750? The concern for bearer token is that it does
not associate the token with any client, so that any client can use
this token to access the resources. Do we worry about it? The
current draft seems explicitly support this behavior.):
o token_type: "Bearer"?
o expires_in: The lifetime in seconds of the access token.
o access_token: a token denotes the following information.
o service URI: the server address or URI which is providing the
service;
o Permitted operations (e.g., read, write);
o Permitted objects (e.g., names of data objects that might be read
or written);
o Priority: optional. If it is presented, value MUST be set to be
either "Urgent", "High", "Normal" or "Low".
o Bandwidth: bandwidth that is given to requested operation, a
weight value used in a weighted bandwidth sharing scheme, or a
integer in number of bps;
o Amount: data size in number of bytes that might be read or
written.
o token_signature: the signature of the access token.
The tokens SHOULD be generated by an entity trusted by both the
DECADE client and server at the request of a DECADE client. For
example this entity could be the client, a server trusted by the
client, or another server managed by a Storage Provider and trusted
by the client. It is important for a server to trust the entity
generating the tokens since each token may incur a resource cost on
the server when used. Likewise, it is important for a client to
trust the entity generating the tokens since the tokens grant access
to the data stored at the server.
Upon generating a token, a client MAY distribute it to another client
Alimi, et al. Expires August 11, 2013 [Page 20]
Internet-Draft DECADE Protocol February 2013
(e.g., via their native application protocol). The receiving client
MAY then connect to the server specified in the token and perform any
operation permitted by the token. The token SHOULD be sent along
with the operation. The server SHOULD validate the token to identify
the client that issued it and whether the requested operation is
permitted by the contents of the token. If the token is successfully
validated, the server SHOULD apply the resource control policies
indicated in the token while performing the operation.
Tokens SHOULD include a unique identifier to allow a server to detect
when a token is used multiple times and reject the additional usage
attempts. Since usage of a token incurs resource costs to a server
(e.g., bandwidth and storage) and a Content Provider may have a
limited budget (see Section 4.5), the Content Provider should be able
to indicate if a token may be used multiple times.
It SHOULD be possible to revoke tokens after they are generated.
This could be accomplished by supplying the server the unique
identifiers of the tokens which are to be revoked.
6.2.3. Status Information
DRP SHOULD provide a status request service that clients can use to
request status information of a server.
6.2.3.1. Status Information on a specific server
Access to such status information SHOULD require client
authorization; that is, clients need to be authorized to access the
requested status information. This authorization is based on the
user delegation concept as described in Section 4.5. The following
status information elements SHOULD be obtained:
o List of associated data objects (with properties);
o Resources used/available.
The following information elements MAY additionally be available:
o List of servers to which data objects have been distributed (in a
certain time-frame);
o List of clients to which data objects have been distributed (in a
certain time-frame).
For the list of servers/clients to which data objects have been
distributed to, the server SHOULD be able to decide on time bounds
for which this information is stored and specify the corresponding
Alimi, et al. Expires August 11, 2013 [Page 21]
Internet-Draft DECADE Protocol February 2013
time frame in the response to such requests. Some of this
information may be used for accounting purposes, e.g., the list of
clients to which data objects have been distributed.
6.2.3.2. Access information on a specific server
Access information MAY be provided for accounting purposes, for
example, when Content Providers are interested in access statistics
for resources and/or to perform accounting per user. Again, access
to such information requires client authorization and SHOULD based on
the delegation concept as described in Section 4.5. The following
type of access information elements MAY be requested:
o What data objects have been accessed by whom and for how many
times;
o Access tokens that a server as seen for a given data object.
The server SHOULD decide on time bounds for which this information is
stored and specify the corresponding time frame in the response to
such requests.
6.2.4. Data Object Attributes
Data Objects that are stored on a DECADE server SHOULD have
associated attributes (in addition to the object identifier and data
object) that relate to the data storage and its management. These
attributes may be used by the server (and possibly the underlying
storage system) to perform specialized processing or handling for the
data object, or to attach related server or storage-layer properties
to the data object. These attributes have a scope local to a server.
In particular, these attributes SHOULD NOT be applied to a server or
client to which a data object is copied.
Depending on authorization, clients SHOULD be permitted to get or set
such attributes. This authorization is based on the delegation
concept as described in Section 4.5. The architecture does not limit
the set of permissible attributes, but rather specifies a set of
baseline attributes that SHOULD be supported:
Expiration Time: Time at which the data object can be deleted;
Data Object size: In bytes;
Media type Labelling of type as per [RFC4288];
Alimi, et al. Expires August 11, 2013 [Page 22]
Internet-Draft DECADE Protocol February 2013
Access statistics: How often the data object has been accessed (and
what tokens have been used).
The data object attributes defined here are distinct from application
metadata (see Section 4.1). Application metadata is custom
information that an application might wish to associate with a data
object to understand its semantic meaning (e.g., whether it is video
and/or audio, its playback length in time, or its index in a stream).
If an application wishes to store such metadata persistently, it can
be stored within data objects themselves.
6.3. Standard Data Transfer (SDT) Protocol
A DECADE server will provide a data access interface, and the SDT
will be used to write data objects to a server and to read (download)
data objects from a server. Semantically, SDT is a client-server
protocol; that is, the server always responds to client requests.
6.3.1. Writing/Uploading Objects
To write a data object, a client first generates the object's name
(see Section 6.1), and then uploads the object to a server and
supplies the generated name. The name can be used to access
(download) the object later; for example, the client can pass the
name as a reference to other client that can then refer to the
object.
Data objects can be self-contained objects such as multimedia
resources, files etc., but also chunks, such as chunks of a P2P
distribution protocol that can be part of a containing object or a
stream.
The application that originates the data objects generates DECADE
object names according to the naming specification in Section 6.1.
Clients (as parts of application entities) upload a named object to a
server. If supported, a server can verify the integrity and other
security properties of uploaded objects.
6.3.2. Downloading Data Objects
A client can request named data objects from a server. In a
corresponding request message, a client specifies the object name and
a suitable access and resource control token. The server checks the
validity of the received token and its associated resource usage-
related properties.
If the named data object exists on the server and the token can be
validated, the server delivers the requested object in a response
Alimi, et al. Expires August 11, 2013 [Page 23]
Internet-Draft DECADE Protocol February 2013
message.
If the data object cannot be delivered the server provides an
corresponding status/reason information in a response message.
Specifics regarding error handling, including additional error
conditions (e.g., overload), precedence for returned errors and its
relation with server policy, are deferred to eventual protocol
specification.
6.4. Server-to-Server Protocols
An important feature of a DECADE system is the capability for one
server to directly download data objects from another server. This
capability allows Applications to directly replicate data objects
between servers without requiring end-hosts to use uplink capacity to
upload data objects to a different server.
DRP and SDT will support operations directly between servers.
Servers are not assumed to trust each other nor are configured to do
so. All data operations are performed on behalf of clients via
explicit instruction. However, the objects being processed do not
necessarily have to originate or terminate at the client (i.e., the
data object might be limited to being exchanged between servers even
if the instruction is triggered by the client). Clients thus will be
able to indicate to a server the following additional parameters:
o Which remote server(s) to access;
o The operation to be performed;
o The Content Provider at the remote server from which to retrieve
the data object, or in which the object is to be stored; and
o Credentials indicating access and resource control to perform the
operation at the remote server.
Server-to-server support is focused on reading and writing data
objects between servers. The data object referred to at the remote
server is the same as the original data object requested by the
client. Object attributes (see Section 6.2.4) might also be
specified in the request to the remote server.
In this way, a server acts as a proxy for a client, and a client can
instantiate requests via that proxy. The operations will be
performed as if the original requester had its own client co-located
with the server.
Alimi, et al. Expires August 11, 2013 [Page 24]
Internet-Draft DECADE Protocol February 2013
When a client sends a request to a server with these additional
parameters, it is giving the server permission to act (proxy) on its
behalf. Thus, it would be prudent for the supplied token to have
narrow privileges (e.g., limited to only the necessary data objects)
or validity time (e.g., a small expiration time).
In the case of a retrieval operation, the server is to retrieve the
data object from the remote server using the specified credentials,
and then optionally return the object to a client. In the case of a
storage operation, the server is to store the object to the remote
server using the specified credentials. The object might optionally
be uploaded from the client or might already exist at the proxy
server.
7. Security Considerations
In general, the security considerations mentioned in [RFC6646] apply
to this document as well.
A DECADE system provides a distributed storage service for content
distribution and similar applications. The system consists of
servers and clients that use these servers to upload data objects, to
request distribution of data objects, and to download data objects.
Such a system is employed in an overall application context -- for
example in a P2P Content Distribution Application, and it is expected
that DECADE clients take part in application-specific communication
sessions.
The security considerations here focus on threats related to the
DECADE system and its communication services, i.e., the DRP/SDT
protocols that have been described in an abstract fashion in this
document.
7.1. Threat: System Denial of Service Attacks
A DECADE network might be used to distribute data objects from one
client to a set of servers using the server-to-server communication
feature that a client can request when uploading an object. Multiple
clients uploading many objects at different servers at the same time
and requesting server-to-server distribution for them could thus
mount massive distributed denial of service (DDOS) attacks,
overloading a network of servers.
This threat is addressed by the server's access control and resource
control framework. Servers can require Application End-Points to be
authorized to store and to download objects, and Application End-
Points can delegate authorization to other Application End-Points
Alimi, et al. Expires August 11, 2013 [Page 25]
Internet-Draft DECADE Protocol February 2013
using the token mechanism.
Of course the effective security of this approach depends on the
strength of the token mechanism. See below for a discussion of this
and related communication security threats.
Denial of Service Attacks against a single server (directing many
requests to that server) might still lead to considerable load for
processing requests and invalidating tokens. SDT therefore MUST
provide a redirection mechanism as described as a requirement in
[I-D.ietf-decade-reqs].
7.2. Threat: Protocol Security
7.2.1. Threat: Authorization Mechanisms Compromised
A DECADE system does not require Application End-Points to
authenticate in order to access a server for downloading objects,
since authorization is not based on End-Point or user identities but
on the delegation-based authorization mechanism. Hence, most
protocol security threats are related to the authorization scheme.
The security of the token mechanism depends on the strength of the
token mechanism and on the secrecy of the tokens. A token can
represent authorization to store a certain amount of data, to
download certain objects, to download a certain amount of data per
time etc. If it is possible for an attacker to guess, construct or
simply obtain tokens, the integrity of the data maintained by the
servers is compromised.
This is a general security threat that applies to authorization
delegation schemes. Specifications of existing delegation schemes
such as OAuth [RFC5849] discuss these general threats in detail. We
can say that the DRP has to specify appropriate algorithms for token
generation. Moreover, authorization tokens should have a limited
validity period that should be specified by the application. Token
confidentiality should be provided by application protocols that
carry tokens, and the SDT and DRP should provide secure
(confidential) communication modes.
7.2.2. Threat: Data Object Spoofing
In a DECADE system, an Application End-Point is referring other
Application End-Points to servers to download a specified data
objects. An attacker could "inject" a faked version of the object
into this process, so that the downloading End-Point effectively
receives a different object (compared to what the uploading End-Point
provided). As result, the downloading End-Point believes that is has
Alimi, et al. Expires August 11, 2013 [Page 26]
Internet-Draft DECADE Protocol February 2013
received an object that corresponds to the name it was provided
earlier, whereas in fact it is a faked object. Corresponding attacks
could be mounted against the application protocol (that is used for
referring other End-Points to servers), servers themselves (and their
storage sub-systems), and the SDT by which the object is uploaded,
distributed and downloaded.
A DECADE systems fundamental mechanism against object spoofing is
name-object binding validation, i.e., the ability of a receiver to
check whether the name he was provided and that he used to request an
object, actually corresponds to the bits he received. As described
above, this allows for different forms of name-object binding, for
example using hashes of data objects, with different hash functions
(different algorithms, different digest lengths). For those
application scenarios where hashes of data objects are not applicable
(for example live-streaming) other forms of name-object binding can
be used (see Section 6.1). This flexibility also addresses
cryptographic algorithm evolvability: hash functions might get
deprecated, better alternatives might be invented etc., so that
applications can choose appropriate mechanisms meeting their security
requirements.
DECADE servers MAY perform name-object binding validation on stored
objects, but Application End-Points MUST NOT rely on that. In other
words, Application End-Points SHOULD perform name-object binding
validation on received objects.
8. IANA Considerations
This document does not have any IANA considerations.
9. Acknowledgments
We thank the following people for their contributions to and/or
detailed reviews of this document:
Carsten Bormann
David Bryan
Dave Crocker
Yingjie Gu
David Harrington
Alimi, et al. Expires August 11, 2013 [Page 27]
Internet-Draft DECADE Protocol February 2013
Hongqiang (Harry) Liu
David McDysan
Borje Ohlman
Konstantinos Pentikousis
Martin Stiemerling
Richard Woundy
Ning Zong
10. References
10.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC6646] Song, H., Zong, N., Yang, Y., and R. Alimi, "DECoupled
Application Data Enroute (DECADE) Problem Statement",
RFC 6646, July 2012.
[I-D.ietf-decade-reqs]
Yingjie, G., Bryan, D., Yang, Y., Zhang, P., and R. Alimi,
"DECADE Requirements", draft-ietf-decade-reqs-08 (work in
progress), August 2012.
[I-D.farrell-decade-ni]
Farrell, S., Kutscher, D., Dannewitz, C., Ohlman, B.,
Keraenen, A., and P. Hallam-Baker, "Naming Things with
Hashes", draft-farrell-decade-ni-10 (work in progress),
August 2012.
10.2. Informative References
[RFC4288] Freed, N. and J. Klensin, "Media Type Specifications and
Registration Procedures", RFC 4288, December 2005.
[RFC5661] Shepler, S., Eisler, M., and D. Noveck, "Network File
System (NFS) Version 4 Minor Version 1 Protocol",
RFC 5661, January 2010.
[RFC5849] Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC 5849,
April 2010.
Alimi, et al. Expires August 11, 2013 [Page 28]
Internet-Draft DECADE Protocol February 2013
[RFC6392] Alimi, R., Rahman, A., and Y. Yang, "A Survey of In-
Network Storage Systems", RFC 6392, October 2011.
[RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework",
RFC 6749, October 2012.
[OpenFlow]
"OpenFlow Organization", <http://www.openflow.org/>.
[GoogleFileSystem]
Ghemawat, S., Gobioff, H., and S. Leung, "The Google File
System", SOSP 2003, October 2003.
Appendix A. In-Network Storage Components Mapped to DECADE Architecture
In this section we evaluate how the basic components of an in-network
storage system identified in Section 3 of [RFC6392] map into a DECADE
system.
A.1. Data Access Interface
Clients can read and write objects of arbitrary size through the
client's Data Controller, making use of a SDT.
A.2. Data Management Operations
Clients can move or delete previously stored objects via the client's
Data Controller, making use of a SDT.
A.3. Data Search Capability
Clients can enumerate or search contents of servers to find objects
matching desired criteria through services provided by the Content
Distribution Application (e.g., buffer-map exchanges, a DHT, or peer-
exchange). In doing so, Application End-Points might consult their
local Data Index in the client's Data Controller.
A.4. Access Control Authorization
All methods of access control are supported: public-unrestricted,
public-restricted and private. Access Control Policies are generated
by a Content Distribution Application and provided to the client's
Resource Controller. The server is responsible for implementing the
access control checks.
Alimi, et al. Expires August 11, 2013 [Page 29]
Internet-Draft DECADE Protocol February 2013
A.5. Resource Control Interface
Clients can manage the resources (e.g., bandwidth) on the DECADE
server that can be used by other Application End-Points. Resource
Sharing Policies are generated by a Content Distribution Application
and provided to the client's Resource Controller. The server is
responsible for implementing the resource sharing policies.
A.6. Discovery Mechanism
The particular protocol used for discovery is outside the scope of
this document. However, options and considerations have been
discussed in Section 5.5.
A.7. Storage Mode
Servers provide an object-based storage mode. Immutable data objects
might be stored at a server. Applications might consider existing
blocks as data objects, or they might adjust block sizes before
storing in a server.
Appendix B. Hisotry
To RFC Editor: This section is informational for you. Please remove
this section before publication.
Since version 10, this document was modified based on the previous
DECADE WG architecture document , and was extended to be a protocol
specification. It addresses the comments from the WG and the
responsible ADs (David Harrington and then Martin Stiemerling). The
authors now request to publish this document through the independent
stream and get the support of Martin.
Authors' Addresses
Richard Alimi
Google
Email: ralimi@google.com
Akbar Rahman
InterDigital Communications, LLC
Email: akbar.rahman@interdigital.com
Alimi, et al. Expires August 11, 2013 [Page 30]
Internet-Draft DECADE Protocol February 2013
Dirk Kutscher
NEC
Email: dirk.kutscher@neclab.eu
Y. Richard Yang
Yale University
Email: yry@cs.yale.edu
Haibin Song
Huawei
Email: haibin.song@huawei.com
Kostas Pentikousis
Huawei
Email: k.pentikousis@huawei.com
Alimi, et al. Expires August 11, 2013 [Page 31]