Internet DRAFT - draft-ietf-insipid-session-id-reqts
draft-ietf-insipid-session-id-reqts
Network Working Group Paul E. Jones
Internet Draft Gonzalo Salgueiro
Intended status: Informational James Polk
Expires: August 8, 2014 Cisco Systems
Laura Liess
Deutsche Telekom
Hadriel Kaplan
Oracle
February 8, 2014
Requirements for an End-to-End Session Identification in
IP-Based Multimedia Communication Networks
draft-ietf-insipid-session-id-reqts-11.txt
Abstract
This document specifies the requirements for an end-to-end session
identifier in IP-based multimedia communication networks. This
identifier would enable endpoints, intermediate devices, and
management and monitoring systems to identify a session end-to-end
across multiple SIP devices, hops, and administrative domains.
Status of this Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on August 8, 2014.
Copyright Notice
Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
Jones, et al. Expires August 8, 2014 [Page 1]
Internet-Draft Requirements for End-To-End Session ID February 2014
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction...................................................2
2. Conventions used in this document..............................3
3. Terminology....................................................3
3.1. What does the Session Identifier Identify?................3
3.2. Communication Session.....................................4
3.3. End-to-End................................................5
4. Session Identifier Use Cases...................................5
4.1. End-to-end identification of a communication session......5
4.2. Protocol Interworking.....................................6
4.3. Traffic Monitoring........................................6
4.4. Tracking transferred sessions.............................6
4.5. Session Signal Logging....................................7
4.6. Identifier Syntax.........................................7
4.7. 3PCC Use Case.............................................7
5. Requirements for the End-to-End Session Identifier.............8
6. Related Work in other Standards Organizations..................9
6.1. Coordination with the ITU-T...............................9
6.2. Requirements within 3GPP..................................9
7. Security Considerations........................................9
8. IANA Considerations...........................................10
9. Acknowledgments...............................................10
10. Contributors.................................................10
11. References...................................................10
11.1. Normative References....................................10
11.2. Informative References..................................10
Author's Addresses...............................................12
1. Introduction
IP-based multimedia communication systems like SIP [1] and H.323 [2]
have the concept of a "call identifier" that is globally unique. The
identifier is intended to represent an end-to-end communication
session from the originating device to the terminating device. Such
an identifier is useful for troubleshooting, session tracking, and so
forth.
Unfortunately, there are a number of factors that mean that the
current call identifiers defined in SIP and H.323 are not suitable
for end-to-end session identification. Perhaps most significant is
the fact that the syntax for the call identifier in SIP and H.323 is
different between the two protocols. This important fact makes it
impossible for call identifiers to be exchanged end-to-end when a
network uses both of these session protocols.
Another reason why the current call identifiers are not suitable to
identify the session end-to-end is that in real-world deployments
Jones, et al. Expires August 8, 2014 [Page 2]
Internet-Draft Requirements for End-To-End Session ID February 2014
devices like Back-to-Back User Agents (B2BUAs) often change the
values as the session signaling passes through. This is true even
when a single session protocol is employed and not a byproduct of
protocol interworking.
Lastly, identifiers that might have been used to identify a session
end-to-end fail to meet that need when sessions are manipulated
through supplementary service interactions. For example, when a
session is transferred or if a private branch exchange (PBX) joins or
merges two communication sessions together locally, the end-to-end
properties of currently-defined identifiers are lost.
This document specifies the requirements for an end-to-end session
identifier in IP-based multimedia communication networks. This
identifier would enable endpoints, intermediate devices, and
management and monitoring systems to identify a session end-to-end
across multiple SIP devices, hops, and administrative domains.
2. Conventions used in this document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [3] when they
appear in ALL CAPS. These words may also appear in this document in
lower case as plain English words, absent their normative meanings.
3. Terminology
3.1. What does the Session Identifier Identify?
The identifier this document places requirements on, the session
identifier, identifies a set of signaling messages associated with
exactly two endpoints which, from each endpoint's perspective, are
related to a single invocation of a communication application.
How the endpoints determine which signaling messages share a given
identifier (that is, what constitutes a single invocation of a
communication application) is intentionally left loosely defined.
The term "call" is often used as an example of such an invocation for
voice and video communication, but different protocols and
deployments define the scope of a "call" in different ways. For
instance, some systems would associate all of the activity between
all three parties involved in a transfer a single "call".
Similarly, the term "session" is often used as an example of such an
invocation, but this term is overloaded to describe both signaling
and media level interaction. A single invocation of the
communication application, as described above, may involve multiple
RTP "sessions" as described by RFC 3550 [4], possibly even multiple
concurrent sessions.
Jones, et al. Expires August 8, 2014 [Page 3]
Internet-Draft Requirements for End-To-End Session ID February 2014
In this document, unless otherwise qualified, the term "communication
session", or simply "session", will refer only to the set of
signaling messages identified by the common session identifier. That
is, a "session" is a set of signaling messages associated with
exactly two endpoints that, from each endpoint's perspective, are
related to a single invocation of a communication application.
The requirements in this document put some constraints on what an
endpoint will consider the same, or a different, invocation of a
communication session. They also ensure that related sessions (as
this document is using the term) can be correlated using only the
session identifiers for each session. Again, what constitutes a
"related" session is intentionally left loosely defined.
The definition considers messages associated with exactly two
endpoints instead of messages sent between two endpoints to allow for
intermediaries that create messages on an endpoint's behalf. It is
possible that an endpoint may not see all of the messages in a
session (as this document is using the term) associated with it.
This definition, and the requirements in this document that put some
constraint on what an endpoint should consider the same, or a
different, invocation of a communication session facilitates
specifying an identifier that allows the two endpoints to use two
entirely different protocols (hence potentially have different ideas
of what a single invocation means) or use two applications that have
a different idea of what a single invocation means.
3.2. Communication Session
A communication session may exist between two SIP user agents and
that may pass through one or more intermediary devices, including
B2BUAs or SIP proxies. For example:
UA-A Middlebox(es) UA-B
SIP message(s) -------[]---[]-------> SIP message(s)
SIP message(s) <-----[]---[]------- SIP message(s)
Figure 1 - Communication Session through Middlebox(es)
The following are examples of acceptable communication sessions as
described in Section 3.1 and are not exhaustive:
o A call directly between two user agents
o A call between two user agents with one or more SIP middleboxes
in the signaling path
o A call between two user agents that was initiated using third-
party call control (3PCC) [6]
Jones, et al. Expires August 8, 2014 [Page 4]
Internet-Draft Requirements for End-To-End Session ID February 2014
o A call between two user agents (e.g., between Alice and Carol)
that results from a different communication session (e.g., Alice
and Bob) wherein one of those user agents (Alice) is transferred
to another user agent (Carol) using a REFER request or a re-
INVITE request
The following are not considered communication sessions:
o A call between any two user agents wherein two or more user
agents are engaged in a conference call via a conference focus:
o each call between the user agent and the conference focus
would be a communication session, and
o each of these is a distinct communication session.
o A call between three user agents (e.g., Alice, Bob, and Carol)
wherein the first user agent (Alice) ad hoc conferences the
other two user agents (Bob and Carol)
o The call between Alice and Bob would be one communication
session.
o The call between Alice and Carol would be a different
communication session.
3.3. End-to-End
The term "end-to-end" in this document means the communication
session from the point of origin, passing through any number of
intermediaries, to the ultimate point of termination. It is
recognized that legacy devices may not support the end-to-end session
identifier. Since such an endpoint will not create a session
identifier, an intermediary device that supports this identifier can
inject an identifier into the session signaling.
4. Session Identifier Use Cases
4.1. End-to-end identification of a communication session
For SIP messaging that either does not involve SIP servers or only
involves SIP proxies, the Call-ID header field value sufficiently
identifies each SIP message within a transaction (see Section 17 of
[1]) or dialog (see Section 12 of [1]). This is not the case when
either B2BUAs or Session Border Controllers (SBCs) [7] are in the
signaling path between User Agents (UAs). Therefore, we need the
ability to identify each communication session through a single SIP
header field regardless of which type of SIP servers are in the
signaling path between UAs. For messages that create a dialog, each
message within the same dialog MUST use the same session identifier.
Derived Requirements: All Requirements in Section 5
Jones, et al. Expires August 8, 2014 [Page 5]
Internet-Draft Requirements for End-To-End Session ID February 2014
4.2. Protocol Interworking
A communication session might originate in an H.323 [2] endpoint and
pass through an SBC before ultimately reaching a terminating SIP user
agent. Likewise, a call might originate on a SIP user agent and
terminate on an H.323 endpoint. It MUST be possible to identify such
sessions end-to-end across the plurality of devices, networks, or
administrative domains.
It is anticipated that the ITU-T will define protocol elements for
H.323 to make the end-to-end signaling possible.
Derived Requirements: REQ5, REQ7
4.3. Traffic Monitoring
UA A and UA B communicate using SIP messaging with a SIP B2BUA acting
as a middlebox which belongs to a SIP service provider. For privacy
reasons, the B2BUA changes the SIP header fields that reveal
information related to the SIP users, device or domain identities.
The service provider uses an external device to monitor and log all
SIP traffic coming to and from the B2BUA. In the case of failures
reported by the customer or when security issues arise (e.g. theft of
service), the service provider has to analyze the logs from the past
several days or weeks and correlates those messages which were
messages for a single end-to-end SIP session.
For this scenario, we must consider three particular use cases:
a) The UAs A and B support the end-to-end session identifier.
Derived Requirements: REQ1, REQ3, REQ4, REQ6.
b) Only the UA A supports the end-to-end session identifier, the UA
B does not.
Derived Requirements: REQ1, REQ3, REQ4, REQ5, REQ6.
c) UA A and UA B do not support the end-to-end session identifier.
Derived Requirements: REQ1, REQ3, REQ4, REQ5, REQ6
4.4. Tracking transferred sessions
It is difficult to track which SIP messages were involved in the same
call across transactions, especially when invoking supplementary
services such as call transfer or call join. There exists a need for
the ability to track communication sessions as they are transferred,
one side at a time, until completion of the session (i.e., until a
BYE is sent).
Derived Requirements: REQ1, REQ2, REQ9
Jones, et al. Expires August 8, 2014 [Page 6]
Internet-Draft Requirements for End-To-End Session ID February 2014
4.5. Session Signal Logging
An after-the-fact search of SIP messages to determine which messages
were part of the same transaction or call is difficult when B2BUAs
and SBCs are involved in the signaling between UAs. Mapping more
than one Call-ID together can be challenging because all of the
values in SIP header fields on one side of the B2BUA or SBC will
likely be different than those on the other side. If multiple B2BUAs
and/or SBCs are in the signaling path, more than two sets of header
field values will exist, creating more of a challenge. Creating a
common header field value through all SIP entities will greatly
reduce any challenge for the purposes of debugging, communication
tracking (such as for security purposes in case of theft of service),
etc.
Derived Requirements: REQ1, REQ3, REQ5, REQ6
4.6. Identifier Syntax
A syntax that is too lax (e.g., one that allows special characters or
a very long identifier) would make it difficult to encode the
identifier in other protocols. Therefore, the syntax of the
identifier should be reasonably constrained.
Derived Requirements: REQ8
4.7. 3PCC Use Case
Third party call control refers to the ability of an entity to create
a call in which communication is actually between two or more parties
other than the one setting up the call. For example, a B2BUA acting
as a third party controller could establish a call between two SIP
UA's using 3PCC procedures as described in section 4.1 of RFC 3725
[6], the flow for which is reproduced below.
A Controller B
|(1) INVITE no SDP | |
|<------------------| |
|(2) 200 offer1 | |
|------------------>| |
| |(3) INVITE offer1 |
| |------------------>|
| |(4) 200 OK answer1 |
| |<------------------|
| |(5) ACK |
| |------------------>|
|(6) ACK answer1 | |
|<------------------| |
|(7) RTP | |
|.......................................|
Figure 2 - Session Identifier 3PCC Scenario
Jones, et al. Expires August 8, 2014 [Page 7]
Internet-Draft Requirements for End-To-End Session ID February 2014
Such a flow must result in a single session identifier being used for
the communication session between UA A and UA B. This use case does
not extend to three SIP UAs.
Derived Requirements: REQ9
5. Requirements for the End-to-End Session Identifier
The following requirements are derived from the use cases and
additional constraints regarding the construction of the identifier.
REQ1: It MUST be possible for an administrator or an external device
which monitors the SIP-traffic to use the identifier to identify
those dialogs, transactions and messages which were at some point in
time components of a single end-to-end SIP session (e.g., parts of
the same call).
REQ2: It MUST be possible to correlate two end-to-end sessions when a
session is transferred or if two different sessions are joined
together via an intermediary (e.g., a PBX).
REQ3: The solution MUST require that the identifier, if present, pass
unchanged through SIP B2BUAs or other intermediaries.
REQ4: The identifier MUST NOT reveal any information related to any
SIP user, device or domain identity. Additionally, it MUST NOT be
possible to correlate a set of session identifiers produced over a
period of time with one another, or with a particular user or device.
This includes any IP Address, port, hostname, domain name, username,
Address-of-Record, MAC address, IP address family, transport type,
subscriber ID, Call-ID, tags, or other SIP header field or body
parts.
REQ5: It MUST be possible to identity SIP traffic with an end-to-end
session identifier from and to end devices that do not support this
new identifier, such as by allowing an intermediary to inject an
identifier into the session signaling.
REQ6: The identifier SHOULD be unique in time and space, similar to
the Call-ID.
REQ7: The identifier SHOULD be constructed in such a way as to make
it suitable for transmission in SIP [1] and H.323 [2].
REQ8: The identifier SHOULD use a restricted syntax and length so as
to allow the identifier to be used in other protocols.
REQ9: It MUST be possible to correlate two end-to-end sessions when
the sessions are created by a third party controller using 3PCC
procedures shown in Figure 1 of RFC 3725 [6].
Jones, et al. Expires August 8, 2014 [Page 8]
Internet-Draft Requirements for End-To-End Session ID February 2014
6. Related Work in other Standards Organizations
6.1. Coordination with the ITU-T
IP multimedia networks are often comprised of a mix of session
protocols like SIP [1] and H.323 [2]. A benefit of the session
identifier is that it uniquely identifies a communication session
end-to-end across session protocol boundaries. Therefore, the need
for coordinated standardization activities across Standards
Development Organizations (SDOs) is imperative.
To facilitate this, a parallel effort is underway in the ITU-T to
introduce the session identifier for H.323 in such a way as to be
interoperable with the procedures defined by the IETF.
6.2. Requirements within 3GPP
3GPP identified in their Release 9 the need for a session identifier
for operation and maintenance purposes to correlate flows in an end-
to-end communication session. 3GPP TS24.229 [5] points to the fact
that the session identifier can be used to correlate SIP messages
belonging to the same session. In the case where signaling passes
through SIP entities like B2BUAs, the end-to-end session identifier
indicates that these dialogs belong to the same end-to-end SIP
communication session.
7. Security Considerations
The security vulnerabilities, attacks, and threat models affecting
other similar SIP identifiers are well documented in RFC 3261 and are
equally applicable to the end-to-end session identifier and subject
to the same mitigating security best practices. Further, storage of
the Session Identifier in a log file is also subject to the security
considerations specified in RFC 6872 [8].
An end-to-end identifier, if not properly constructed, could provide
confidential information that would allow one to identify the
individual, device, or domain initiating or terminating a
communication session. In adhering to REQ4, the solution produced in
accordance with these requirements MUST take appropriate measures to
properly secure and obfuscate sensitive or private information that
might allow one to identify a person, device, or domain. This means
that the end-to-end session identifier MUST NOT reveal information
elements such as the MAC address or IP address. It is outside the
scope of this document to specify the implementation details of such
security and privacy measures. Those details may vary with the
specific construction mechanism selected for the end-to-end session
identifier and, therefore, will be discussed in suitable detail in
the solution document specifying the actual end-to-end identifier.
A key security consideration is to ensure that an attacker cannot
surreptitiously spoof the identifier and effectively render it
Jones, et al. Expires August 8, 2014 [Page 9]
Internet-Draft Requirements for End-To-End Session ID February 2014
useless to diagnostic equipment that cannot properly correlate
signaling messages due to the duplicate session identifiers that
exist in the same space and time. In accordance with REQ6, this end-
to-end identifier MUST be sufficiently long and random to prevent it
from being guessable as well as avoid collision with another
identifier. The secure transport of the identifier, need for
authentication, encryption, etc. should be appropriately evaluated
based on the network infrastructure, transport domain and usage
scenarios for the end-to-end session identifier.
8. IANA Considerations
There are no IANA considerations associated with this document.
9. Acknowledgments
The authors would like to acknowledge Paul Kyzivat, Christer
Holmberg, Charles Eckel, Andy Hutton, Salvatore Loreto, Keith Drage,
Chris Pearce for their contribution and collaboration in developing
this document.
This document was prepared using 2-Word-v2.0.template.dot.
10. Contributors
Two other people originally participated as co-authors and provided
substantial contributions to this document, namely Roland Jesske,
Parthasarathi Ravindran.
11. References
11.1. Normative References
[1] Rosenberg, J., et al., "SIP: Session Initiation Protocol", RFC
3261, June 2002.
[2] Recommendation ITU-T H.323, "Packet-based multimedia
communications systems", December 2009.
[3] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.
11.2. Informative References
[4] Schulzrinne, H., et al., "RTP: A Transport Protocol for Real-
Time Applications", RFC 3550, July 2003.
[5] 3GPP TS 24.229, "IP multimedia call control protocol based on
Session Initiation Protocol (SIP) and Session Description
Protocol (SDP); Stage 3".
Jones, et al. Expires August 8, 2014 [Page 10]
Internet-Draft Requirements for End-To-End Session ID February 2014
[6] Rosenberg, J., Peterson, J., Schulzrinne, H., Camarillo, G.,
"Best Current Practices for Third Party Call Control (3pcc) in
the Session Initiation Protocol (SIP)", RFC 3725, April 2004.
[7] Hautakorpi, J., Camarillo, G., Penfield, R., Hawrylyshen, A.,
and M. Bhatia, "Requirements from Session Initiation Protocol
(SIP) Session Border Control (SBC) Deployments", RFC 5853,
April 2010.
[8] Gurbani, V., Burger, E., Anjali, T., Abdelnur, H., Festor, O.,
"The Common Log Format (CLF) for the Session Initiation
Protocol (SIP): Framework and Information Mode", RFC 6872,
February 2013.
Jones, et al. Expires August 8, 2014 [Page 11]
Internet-Draft Requirements for End-To-End Session ID February 2014
Author's Addresses
Paul E. Jones
Cisco Systems, Inc.
7025 Kit Creek Rd.
Research Triangle Park, NC 27709
USA
Phone: +1 919 476 2048
Email: paulej@packetizer.com
IM: xmpp:paulej@packetizer.com
Hadriel Kaplan
Oracle
71 Third Ave.
Burlington, MA 01803, USA
Email: hadriel.kaplan@oracle.com
Laura Liess
Deutsche Telekom NP
64295 Darmstadt
Heinrich-Hertz-Str. 3-7
Germany
Phone: +49 6151 268 2761
Email: laura.liess.dt@gmail.com
James Polk
Cisco Systems, Inc.
3913 Treemont Circle
Colleyville, Texas,
USA
Phone: +1 817 271 3552
Email: jmpolk@cisco.com
IM: xmpp:jmpolk@cisco.com
Gonzalo Salgueiro
Cisco Systems, Inc.
7025 Kit Creek Rd.
Research Triangle Park, NC 27709
USA
Phone: +1 919 392 3266
Email: gsalguei@cisco.com
IM: xmpp:gsalguei@cisco.com
Jones, et al. Expires August 8, 2014 [Page 12]