Internet DRAFT - draft-ietf-roll-rnfd
draft-ietf-roll-rnfd
ROLL K. Iwanicki
Internet-Draft University of Warsaw
Intended status: Standards Track 18 September 2023
Expires: 21 March 2024
RNFD: Fast border router crash detection in RPL
draft-ietf-roll-rnfd-02
Abstract
By and large, a correct operation of a RPL network requires border
routers to be up. In many applications, it is beneficial for the
nodes to detect a crash of a border router as soon as possible to
trigger fallback actions. This document describes RNFD, an extension
to RPL that expedites border router failure detection, even by an
order of magnitude, by having nodes collaboratively monitor the
status of a given border router. The extension introduces an
additional state at each node, a new type of RPL Control Message
Options for synchronizing this state among different nodes, and the
coordination algorithm itself.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 21 March 2024.
Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
Iwanicki Expires 21 March 2024 [Page 1]
Internet-Draft RNFD September 2023
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Effects of LBR Crashes . . . . . . . . . . . . . . . . . 3
1.2. Design Principles . . . . . . . . . . . . . . . . . . . . 4
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1. Protocol State Machine . . . . . . . . . . . . . . . . . 7
3.2. Counters and Communication . . . . . . . . . . . . . . . 8
4. The RNFD Option . . . . . . . . . . . . . . . . . . . . . . . 9
4.1. General CFRC Requirements . . . . . . . . . . . . . . . . 9
4.2. Format of the Option . . . . . . . . . . . . . . . . . . 10
5. RPL Router Behavior . . . . . . . . . . . . . . . . . . . . . 12
5.1. Joining a DODAG Version and Changing the RNFD Role . . . 12
5.2. Detecting and Verifying Problems with the DODAG Root . . 13
5.3. Disseminating Observations and Reaching Agreement . . . . 15
5.4. DODAG Root’s Behavior . . . . . . . . . . . . . . . . . . 15
5.5. Activating and Deactivating the Protocol on Demand . . . 16
5.6. Processing CFRCs of Incompatible Lengths . . . . . . . . 17
5.7. Summary of RNFD’s Interactions with RPL . . . . . . . . . 18
5.8. Summary of RNFD’s Constants . . . . . . . . . . . . . . . 18
6. Manageability Considerations . . . . . . . . . . . . . . . . 19
6.1. Role Assignment and CFRC Size Adjustment . . . . . . . . 19
6.2. Virtual DODAG Roots . . . . . . . . . . . . . . . . . . . 20
7. Security Considerations . . . . . . . . . . . . . . . . . . . 21
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 22
9. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 22
10. References . . . . . . . . . . . . . . . . . . . . . . . . . 22
10.1. Normative References . . . . . . . . . . . . . . . . . . 22
10.2. Informative References . . . . . . . . . . . . . . . . . 23
Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 24
1. Introduction
RPL is an IPv6 routing protocol for low-power and lossy networks
(LLNs) [RFC6550]. Such networks are usually constrained in device
energy and channel capacity. They are formed largely of nodes that
offer little processing power and memory, and links that are of
variable qualities and support low data rates. Therefore, the main
challenge that a routing protocol for LLNs has to address is
minimizing resource consumption without sacrificing reaction time to
network changes.
Iwanicki Expires 21 March 2024 [Page 2]
Internet-Draft RNFD September 2023
One of the main design principles adopted in RPL to minimize node
resource consumption is delegating much of the responsibility for
routing to LLN border routers (LBRs). A network is organized into
destination-oriented directed acyclic graphs (DODAGs), each
corresponding to an LBR and having all its paths terminate at the
LBR. To this end, every node is dynamically assigned a rank
representing its distance, measured in some metric, to a given LBR,
with the LBR having the minimal rank, which reflects its role as the
DODAG root. The ranks allow each non-LBR node to select from among
its neighbors (i.e., nodes to which the node has links) those ones
that are closer to the LBR than the node itself: the node’s parents
in the graph. The resulting DODAG paths, consisting of the node-
parent links, are utilized for routing packets upward: to the LBR and
outside the LLN. They are also used by nodes to periodically report
their connectivity upward to the LBR, which allows in turn for
directing packets downward, from the LBR to these nodes, for
instance, by means of source routing [RFC6554]. All in all, not only
do LBRs participate in routing but also drive the process of DODAG
construction and maintenance underlying the protocol.
To play this central role, LBRs are expected to be more capable than
regular LLN nodes. They are assumed not to be constrained in
computing power, memory, and energy, which often entails a more
involved hardware-software architecture and tethered power supply.
This, however, also makes them more prone to failures, especially
since in large deployments it is often difficult to ensure a backup
power supply for every LBR.
1.1. Effects of LBR Crashes
When an LBR crashes, the nodes in its DODAG lose the ability to
communicate with other Internet hosts. In addition, a significant
fraction of DODAG paths interconnecting the nodes become invalid, as
they pass through the LBR. The others also degenerate as a result of
DODAG repair attempts, which are bound to fail. In effect, routing
inside the DODAG also becomes largely impossible. Consequently, it
is desirable that an LBR crash be detected by the nodes fast, so that
they can leave the broken DODAG and join another one or trigger
additional application- or deployment-dependent fallback mechanisms,
thereby minimizing the negative impact of the disconnection.
Iwanicki Expires 21 March 2024 [Page 3]
Internet-Draft RNFD September 2023
Since all DODAG paths lead to the corresponding LBR, detecting its
crash by a node entails dropping all parents and adopting an infinite
rank, which reflects the node’s inability to reach the LBR.
Depending on the deployment settings, the node can then remain in
such a state, join a different DODAG, or even become itself the root
of a floating DODAG. In any case, however, achieving this state for
all nodes is slow, can generate heavy traffic, and is difficult to
implement correctly [Iwanicki16] [Paszkowska19] [Ciolkosz19].
To start with, tearing down all DODAG paths requires each of the
LBR’s neighbors to detect that its link with the LBR is no longer up.
Otherwise, any of the neighbors unaware of this fact can keep
advertising a finite rank and can thus be other nodes’ parent or
ancestor in the DODAG: such nodes will incorrectly believe they have
a valid path to the LBR. Detecting a crash of a link by a node
normally happens when the node has observed sufficiently many
forwarding failures over the link. Therefore, considering the low-
data-rate applications of LLNs, the period from the crash to the
moment of eliminating from the DODAG the last link to the LBR may be
long. Subsequently learning by all nodes that none of their links
can form any path leading to the LBR also adds latency, partly due to
parent changes that the nodes independently perform in attempts to
repair their broken paths locally. Since a non-LBR node has only
local knowledge of the network, potentially inconsistent with that of
other nodes, such parent changes often produce paths containing
loops, which have to be broken before all nodes can conclude that no
path to the LBR exists globally. Even with RPL’s dedicated loop
detection mechanisms [RFC6553], this also requires traffic, and hence
time. Finally, switching a parent or discovering a loop can also
generate cascaded bursts of control traffic, owing to the adaptive
Trickle algorithm for exchanging DODAG information [RFC6202].
Overall, the behavior of the network when handling an LBR crash is
highly suboptimal, thereby not being in line with RPL’s goals of
minimizing resource consumption and reaction latencies.
1.2. Design Principles
To address this issue, this document proposes an extension to RPL,
dubbed Root Node Failure Detector (RNFD). To minimize the time and
traffic required to handle an LBR crash, the RNFD algorithm adopts
the following design principles, derived directly from the previous
observations:
1. Explicitly coordinating LBR monitoring between nodes instead of
relying only on the emergent behavior resulting from their
independent operation.
Iwanicki Expires 21 March 2024 [Page 4]
Internet-Draft RNFD September 2023
2. Avoiding probing all links to the dead LBR so as to reduce the
tail latency when eliminating these links from the DODAG.
3. Exploiting concurrency by prompting proactive checking for a
possible LBR crash when some nodes suspect such a failure may
have taken place, which aims to further reduce the critical path.
4. Minimizing changes to RPL’s existing algorithms by operating in
parallel and largely independently (in the background), and
introducing few additional assumptions.
While these principles do improve RPL’s performance under a wide
range of LBR crashes, their probabilistic nature precludes hard
guarantees for all possible corner cases. In particular, in some
scenarios, RNFD’s operation may result in false negatives, but these
situations are peculiar and will eventually be handled by RPL’s own
aforementioned mechanisms. Likewise, in some scenarios, notably
involving highly unstable links, false positives may occur, but they
can be alleviated as well. In any case, the principles also
guarantee that RNFD can be deactivated at any time, if needed, in
which case RPL’s operation is unaffected.
2. Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “NOT RECOMMENDED”, “MAY”, and
“OPTIONAL” in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
The Terminology used in this document is consistent with and
incorporates that described in “Terms Used in Routing for Low-Power
and Lossy Networks (LLNs)” [RFC7102], “RPL: IPv6 Routing Protocol for
Low-Power and Lossy Networks” [RFC6550], and “The Routing Protocol
for Low-Power and Lossy Networks (RPL) Option for Carrying RPL
Information in Data-Plane Datagrams” [RFC6553]. Other terms in use
in LLNs can be found in “Terminology for Constrained-Node Networks”
[RFC7228].
In particular, the following acronyms appear in the document:
DIO DODAG Information Object (a RPL message)
DIS DODAG Information Solicitation (a RPL message)
DODAG Destination-Oriented Directed Acyclic Graph
LLN Low-power and Lossy Network
Iwanicki Expires 21 March 2024 [Page 5]
Internet-Draft RNFD September 2023
LBR LLN Border Router
In addition, the document introduces the following concepts:
Sentinel One of the two roles that a node can play in RNFD. For a
given DODAG Version, a Sentinel node is the DODAG root’s neighbor
that monitors the DODAG root’s status. There are normally
multiple Sentinels for a DODAG root. However, being the DODAG
root’s neighbor need not imply being Sentinel.
Acceptor The other of the two roles that a node can play in RNFD.
For a given DODAG Version, an Acceptor node is a node that is not
Sentinel.
Locally Observed DODAG Root’s State (LORS) A node’s local knowledge
of the DODAG root’s status, specifying in particular whether the
DODAG root is up.
Conflict-Free Replicated Counter (CFRC) Conceptually represents a
dynamic set whose cardinality can be estimated. It defines a
partial order on its values and supports element addition and
union. The union operation is order- and duplicate-insensitive,
that is, idempotent, commutative, and associative.
3. Overview
As mentioned previously, LBRs are DODAG roots in RPL, and hence a
crash of an LBR is global in that it affects all nodes in the
corresponding DODAG. Therefore, each node running RNFD for a given
DODAG explicitly tracks the DODAG root’s current condition, which is
referred to as Locally Observed DODAG Root’s State (LORS), and
synchronizes its local knowledge with other nodes.
Since monitoring the condition of the DODAG root is performed by
tracking the status of its links (i.e., whether they are up or down),
it must be done by the root’s neighbors; other nodes must accept
their observations. Consequently, depending on their roles, non-root
nodes are divided in RNFD into two disjoint groups: Sentinels and
Acceptors. A Sentinel node is the DODAG root’s neighbor that
monitors its link with the root. The DODAG root thus normally has
multiple Sentinels but being its neighbor need not imply being
Sentinel. An Acceptor node is in turn a node that is not Sentinel.
Acceptors thus mainly collect and propagate Sentinels’ observations.
More information on Sentinel selection can be found in Section 6.1.
Iwanicki Expires 21 March 2024 [Page 6]
Internet-Draft RNFD September 2023
3.1. Protocol State Machine
The possible values of LORS and transitions between them are depicted
in Figure 1. States “UP” and “GLOBALLY DOWN” can be attained by both
Sentinels and Acceptors; states “SUSPECTED DOWN” and “LOCALLY
DOWN”—by Sentinels only.
+---------------------------------------------------------+
| |---------------------------+ 3a |
| +-----------------+---------+ 3b | |
| | 2b | v v v
+-+----+-+ 1 +---------+-+ +-----------+ +-+------+-+
| UP +---->+ SUSPECTED +---->+ LOCALLY +---->+ GLOBALLY |
| +<----+ DOWN | 2a | DOWN | 3c | DOWN |
+-+----+-+ 4a +-----------+ +-+---------+ +-+--------+
^ ^ | |
| | 4b | |
| +---------------------------+ 5 |
+--------------------------------------------------+
Figure 1: RNFD States and Transitions
To begin with, when any node joins a DODAG Version, the DODAG root
must appear alive, so the node initializes RNFD with its LORS equal
to “UP”. For a properly working DODAG root, the node remains in state
“UP”.
However, when a node—acting as Sentinel—starts suspecting that the
root may have crashed, it changes its LORS to “SUSPECTED DOWN”
(transition 1 in Figure 1). The transition from “UP” to “SUSPECTED
DOWN” can happen based on the node’s observations at either the data
plane, for instance, link-layer triggers about missing hop-by-hop
acknowledgments for packets forwarded over the node’s link to the
root, or the control plane, for example, a significant growth in the
number of Sentinels already suspecting the root to be dead. In state
“SUSPECTED DOWN”, the Sentinel node may verify its suspicion and/or
inform other nodes about the suspicion. When this has been done, it
changes its LORS to “LOCALLY DOWN” (transition 2a). In some cases,
the verification need not be performed and, as an optimization, a
direct transition from “UP” to “LOCALLY DOWN” (transition 2b) can be
done instead.
If sufficiently many Sentinels have their LORS equal to “LOCALLY
DOWN”, all nodes—Sentinels and Acceptors—consent globally that the
DODAG root must have crashed and set their LORS to “GLOBALLY DOWN”,
irrespective of the previous value (transitions 3a, 3b, and 3c).
State “GLOBALLY DOWN” is terminal in that the only transition any
node can perform from this to another state (transition 5) takes
Iwanicki Expires 21 March 2024 [Page 7]
Internet-Draft RNFD September 2023
place when the node joins a new DODAG version. When a node is in
state “GLOBALLY DOWN”, RNFD forces RPL to maintain an infinite rank
and no parent, thereby preventing routing packets upward in the
DODAG. In other words, this state represents a situation in which
all non-root nodes agree that the current DODAG version is unusable,
and hence, to recover, the root has to give a proof of being alive by
initiating a new DODAG Version.
In contrast, if a node—either Sentinel or Acceptor—is in state “UP”,
RNFD does not influence RPL’s packet forwarding: a node can route
packets upward if it has a parent. The same is true for a Sentinel
node in states “SUSPECTED DOWN” and “LOCALLY DOWN”. Finally, while in
any of the two states, a Sentinel node may observe some activity of
the DODAG root, and hence decide that its suspicion is a mistake. In
such a case, it returns to state “UP” (transitions 4a and 4b).
3.2. Counters and Communication
To enable arriving at a global conclusion that the DODAG root has
crashed (i.e., transiting to state “GLOBALLY DOWN”), all nodes count
locally and synchronize among each other the number of Sentinels
considering the root to be dead (i.e., those in state “LOCALLY
DOWN”). This process employs structures referred to as conflict-free
replicated counters (CFRCs). They are stored and modified
independently by each node and are disseminated throughout the
network in options added to RPL link-local control messages: DODAG
Information Objects (DIOs) and DODAG Information Solicitations
(DISs). Upon reception of such an option from its neighbor, a node
merges the received counter with its local one, thereby obtaining a
new content for its local counter.
The merging operation is idempotent, commutative, and associative.
Moreover, all possible counter values are partially ordered. This
enables ensuring eventual consistency of the counters acros all
nodes, irrespective of the particular sequence of merges, shape of
the DODAG, or general network topology.
Each node in RNFD maintains two CFRCs for a DODAG:
* PositiveCFRC, counting Sentinels that have considered or still
consider the root node as alive in the current DODAG Version,
* NegativeCFRC, counting Sentinels that have considered or still
consider the root node as dead in the current DODAG Version.
Iwanicki Expires 21 March 2024 [Page 8]
Internet-Draft RNFD September 2023
PositiveCFRC is always greater than or equal to the NegativeCFRC in
terms of the partial order defined for the counters. The difference
between the value of PositiveCFRC and the value of NegativeCFRC is
thus nonnegative and estimates the number of Sentinels that still
consider the DODAG root node as alive.
4. The RNFD Option
RNFD state synchronization between nodes takes place through the RNFD
Option. It is a new type of RPL Control Message Options that is
carried in link-local RPL control messages, notably DIOs and DISs.
Its main task is allowing the receivers to merge their two CFRCs with
the sender’s CFRCs.
4.1. General CFRC Requirements
CFRCs in RNFD MUST support the following operations:
value(c) Returns a nonnegative integer value corresponding to the
number of nodes counted by a given CFRC, c.
zero() Returns a CFRC that counts no nodes, that is, has its value
equal to 0.
self() Returns a CFRC that counts only the node executing the
operation.
infinity() Returns a CFRC that counts all possible nodes and
represents a special value, infinity.
merge(c1, c2) Returns a CFRC that is a union of c1 and c2 (i.e.,
counts all nodes that are counted by either c1, c2, or both c1 and
c2).
compare(c1, c2) Returns the result of comparing c1 to c2.
saturated(c) Returns TRUE if a given CFRC, c, is saturated (i.e., no
more new nodes should be counted by it) or FALSE otherwise.
The partial ordering of CFRCs implies that the result of compare(c1,
c2) can be either:
* smaller, if c1 is ordered before c2 (i.e., c2 counts all nodes
that c1 counts and at least one node that c1 does not count);
* greater, if c1 is ordered after c2 (i.e., c1 counts all nodes that
c2 counts and at least one node that c2 does not count);
Iwanicki Expires 21 March 2024 [Page 9]
Internet-Draft RNFD September 2023
* equal, if c1 and c2 are the same (i.e., they count the same
nodes);
* incomparable, otherwise.
In particular, zero() is smaller than all other values and infinity()
is greater than any other value.
The properties of merging in turn can be formalized as follows for
any c1, c2, and c3:
* idempotence: c1 = merge(c1, c1);
* commutativity: merge(c1, c2) = merge(c2, c1);
* associativity: merge(c1, merge(c2, c3)) = merge(merge(c1, c2),
c3).
In particular, merge(c, zero()) always equals c while merge(c,
infinity()) always equals infinity().
There are many algorithmic structures that can provide the
aforementioned properties of CFRC. Although in principle RNFD does
not rely on any specific one, the option adopts so-called linear
counting [Whang90].
4.2. Format of the Option
The format of the RNFD Option conforms to the generic format of RPL
Control Message Options:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = TBD1 | Option Length | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
+ +
| PosCFRC, NegCFRC (Variable Length*) |
. .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The '*' denotes that, if present, the fields have equal lengths.
Figure 2: Format of the RNFD Option
Option Type TBD1
Iwanicki Expires 21 March 2024 [Page 10]
Internet-Draft RNFD September 2023
Option Length 8-bit unsigned integer. Denotes the length of the
option in octets excluding the Option Type and Option Length
fields. Its value MUST be even. A value of 0 denotes that RNFD
is disabled in the current DODAG Version.
PosCFRC, NegCFRC Two variable-length, octet-aligned bit arrays
carrying the sender’s PositiveCFRC and NegativeCFRC, respectively.
The length of the arrays constituting the PosCFRC and NegCFRC fields
is the same and is derived from Option Length as follows. The value
of Option Length is divided by 2 to obtain the number of octets each
of the two arrays occupies. The resulting number of octets is
multiplied by 8 which yields an upper bound on the number of bits in
each array. As the actual bit length of each of the arrays, the
largest prime number less than the upper bound is assumed. For
example, if the value of Option Length is 16, then each array
occupies 8 octets, and its actual bit length is 61, as this is the
largest prime number less than 64.
Furthermore, for any bit equal to 1 in the NegCFRC, the bit with the
same index MUST be equal to 1 also in the PosCFRC. Any unused bits
(i.e., the bits beyond the actual bit length of each of the arrays)
MUST be equal to 0. Finally, if PosCFRC has all its bits equal to 1,
then NegCFRC MUST also have all its bits equal to 1.
The CFRC operations are defined for such bit arrays of a given length
as follows:
value(c) Returns the smallest integer value not less than -LT*ln(L0/
LT), where ln() is the natural logarithm function, L0 is the
number of bits equal to 0 in the array corresponding to c and LT
is the bit length of the array.
zero() Returns an array with all bits equal to 0.
self() Returns an array with a single bit, selected uniformly at
random, equal to 1.
infinity() Returns an array with all bits equal to 1.
merge(c1, c2) Returns a bit array that constitutes a bitwise OR of
c1 and c2, that is, a bit in the resulting array is equal to 0
only if the same bit is equal to 0 in both c1 and c2.
compare(c1, c2) Returns:
* equal if each bit of c1 is equal to the corresponding bit of c2;
Iwanicki Expires 21 March 2024 [Page 11]
Internet-Draft RNFD September 2023
* less if c1 and c2 are not equal and, for each bit equal to 1 in
c1, the corresponding bit in c2 is also equal to 1;
* greater if c1 and c2 are not equal and, for each bit equal to 1 in
c2, the corresponding bit in c1 is also equal to 1;
* incomparable, otherwise.
saturated(c) Returns TRUE, if more than 63% of the bits in c are
equal to 1, or FALSE, otherwise.
5. RPL Router Behavior
Although RNFD operates largely independently of RPL, it does need
interact with RPL and the overall protocol stack. These interactions
are described next and can be realized, for instance, by means of
event triggers.
5.1. Joining a DODAG Version and Changing the RNFD Role
Whenever RPL running at a node joins a DODAG Version, RNFD—if
active—MUST assume for the node the role of Acceptor. Accordingly,
it MUST set its LORS to “UP” and its PositiveCFRC and NegativeCFRC to
zero().
The role MAY then change between Acceptor and Sentinel at any time.
However, while a switch from Sentinel to Acceptor has no
preconditions, for a switch from Acceptor to Sentinel to be possible,
_all_ of the following conditions MUST hold:
1. LORS is “UP”;
2. saturated(PositiveCFRC) is FALSE;
3. a neighbor entry for the DODAG root is present in RPL’s DODAG
parent set;
4. the neighbor is considered reachable via its link-local IPv6
address.
A role change also REQUIRES appropriate updates to LORS and CFRCs, so
that the node is properly accounted for. More specifically, when
changing its role from Acceptor to Sentinel, the node MUST add itself
to its PositiveCFRC as follows. It MUST generate a new CFRC value,
selfc = self(), and MUST replace its PositiveCFRC, denoted oldpc,
with newpc = merge(oldpc, selfc). In contrast, the effects of a
switch from Sentinel to Acceptor vary depending on the node’s value
of LORS before the switch:
Iwanicki Expires 21 March 2024 [Page 12]
Internet-Draft RNFD September 2023
* for “GLOBALLY DOWN”, the node MUST NOT modify its LORS,
PositiveCFRC, and NegativeCFRC;
* for “LOCALLY DOWN”, the node MUST set its LORS to “UP” but MUST
NOT modify its PositiveCFRC and NegativeCFRC;
* for “UP” and “SUSPECTED DOWN”, the node MUST set its LORS to “UP”,
MUST NOT modify it PositiveCFRC, but MUST add itself to
NegativeCFRC, that is, replace its NegativeCFRC, denoted oldnc,
with newnc = merge(oldnc, selfc), where selfc is the counter
generated with self() when the node last added itself to its
PositiveCFRC.
5.2. Detecting and Verifying Problems with the DODAG Root
Only nodes that are Sentinels take active part in detecting crashes
of the DODAG Root; Acceptors just disseminate their observations,
reflected in the CFRCs.
The DODAG root monitoring SHOULD be based on both internal inputs,
notably the values of CFRCs and LORS, and external inputs, such as
triggers from RPL and other protocols. External input monitoring
SHOULD be performed preferably in a reactive fashion, also
independently of RPL, and at both data plane and control plane. In
particular, it is RECOMMENDED that RNFD be directly notified of
events relevant to the routing adjacency maintenance mechanisms on
which RPL relies, such as Layer 2 triggers [RFC5184] or the Neighbor
Unreachability Detection [RFC4861] mechanism. Only events concerning
the DODAG root need be monitored to this end. For example, RNFD can
conclude that there may be problems with the DODAG root if it
observes a lack of multiple consecutive L2 acknowledgments for
packets transmitted by the node via the link to the DODAG root.
Internally, in turn, it is RECOMMENDED that RNFD take action whenever
there is a change to its local CFRCs, so that a node can have a
chance to participate in detecting potential problems even when
normally it would not exchange packets over the link with the DODAG
root during some period. In particular, RNFD SHOULD conclude that
there may be problems with the DODAG root, when the fraction
value(NegativeCFRC)/value(PositiveCFRC) has grown by at least
RNFD_SUSPICION_GROWTH_THRESHOLD since the node last set its LORS to
“UP”.
Whenever having its LORS set to “UP” RNFD concludes—based on either
external or internal inputs—that there may be problems with the link
with the DODAG root, it MUST set its LORS to either “SUSPECTED DOWN”
or, as an optimization, to “LOCALLY DOWN”.
Iwanicki Expires 21 March 2024 [Page 13]
Internet-Draft RNFD September 2023
The “SUSPECTED DOWN” value of LORS is temporary: its aim is to give
RNFD an additional opportunity to verify whether the link with the
DODAG root is indeed down. Depending on the outcome of such
verification, RNFD MUST set its LORS to either “UP”, if the link has
been confirmed not to be down, or “LOCALLY DOWN”, otherwise. The
verification can be performed, for example, by transmitting RPL DIS
or ICMPv6 Echo Request messages to the DODAG root’s link-local IPv6
address and expecting replies confirming that the root is up and
reachable through the link. Care SHOULD be taken not to overload the
DODAG root with traffic due to simultaneous probes, for instance,
random backoffs can be employed to this end. It is RECOMMENDED that
the “SUSPECTED DOWN” value of LORS is attained and verification takes
place if RNFD’s conclusion on the state of the DODAG root is based
only on indirect observations, for example, the aforementioned growth
of the CFRC values. In contrast, for direct observations, such as
missing L2 acknowledgments, the verification MAY be skipped, with the
node’s LORS effectively changing from “UP” directly to “LOCALLY
DOWN”.
For consistency with RPL, when detecting potential problems with the
DODAG root, RNFD also MUST make use of RPL’s independent knowledge.
More specifically, a node MUST switch its LORS from “UP” or
“SUSPECTED DOWN” directly to “LOCALLY DOWN” if a neighbor entry for
the DODAG root is removed from RPL’s DODAG parent set or the neighbor
ceases to be considered reachable via its link-local IPv6 address.
Finally, while having its LORS already equal to “LOCALLY DOWN”, a
node may make an observation confirming that its link with the DODAG
root is actually up. In such a case, it SHOULD set its LORS back to
“UP” but MUST NOT do this before the previous conditions 2–4
necessary for a node to change its role from Acceptor to Sentinel all
hold.
To appropriately account for the node’s observations on the state of
the DODAG root, the aforementioned LORS transitions are accompanied
by changes to the node’s local CFRCs as follows. Changes between
“UP” and “SUSPECTED DOWN” do not affect any of the two CFRCs. During
a switch from “UP” or “SUSPECTED DOWN” to “LOCALLY DOWN”, in turn,
the node MUST add itself to its NegativeCFRC, as explained
previously. By symmetry, a transition from “LOCALLY DOWN” to “UP”
REQUIRES the node to add itself to its PositiveCFRC, again, as
explained previously.
Iwanicki Expires 21 March 2024 [Page 14]
Internet-Draft RNFD September 2023
5.3. Disseminating Observations and Reaching Agreement
Nodes disseminate their observations by exchanging CFRCs in the RNFD
Options embedded in link-local RPL control messages, notably DIOs and
DISs. When processing such a received option, a node—acting as
Sentinel or Acceptor—MUST update its PositiveCFRC and NegativeCFRC to
respectively newpc = merge(oldpc, recvpc) and newnc = merge(oldnc,
recvnc), where oldpc and oldnc are the values of the node’s
PositiveCFRC and NegativeCFRC before the update, while recvpc and
recvnc are the received values of option fields PosCFRC and NegCFRC,
respectively.
In effect, the node’s value of fraction
value(NegativeCFRC)/value(PositiveCFRC) may change. If the fraction
reaches at least RNFD_CONSENSUS_THRESHOLD (with value(PositiveCFRC)
being greater than zero), then the node consents on the DODAG root
being down. Accordingly, it MUST change its LORS to “GLOBALLY DOWN”
and set its PositiveCFRC and NegativeCFRC both to infinity().
The “GLOBALLY DOWN” value of LORS is terminal: the node MUST NOT
change it and MUST NOT modify its CFRCs until it joins a new DODAG
Version. With this value of LORS, RNFD at the node MUST also prevent
RPL from having any DODAG parent and advertising any Rank other than
INFINITE_RANK.
Since the RNFD Option is embedded, among others, in RPL DIO control
messages, updates to a node’s CFRCs may affect the sending schedule
of these messages, which is driven by the DIO Trickle timer
[RFC6206]. It is RECOMMENDED to use for RNFD a dedicated Trickle
timer, different from RPL’s DIO Trickle timer. In such a setting,
whenever RNFD’s timer fires and no DIO message containing the RNFD
Option has been sent to the link-local all-RPL-nodes multicast IPv6
address since the previous firing, the node sends a DIO message
containing the RNFD Option to the address. In contrast, in the
absence of a dedicated Trickle timer for RNFD, an implementation
SHOULD ensure that the RNFD Option is present in multicast DIO
messages sufficiently often to quickly propagate changes to the
node’s CFRCs. In either case, a node MUST reset its Trickle timer
when it changes its LORS to “GLOBALLY DOWN”, so that information
about the detected crash of the DODAG root is disseminated in the
DODAG fast. Likewise, a node SHOULD reset its Trickle timer when any
of its local CFRCs changes significantly.
5.4. DODAG Root’s Behavior
The DODAG root node MUST assume the role of Acceptor in RNFD and MUST
NOT ever switch this role. It MUST also monitor its LORS and local
CFRCs, so that it can react to various events.
Iwanicki Expires 21 March 2024 [Page 15]
Internet-Draft RNFD September 2023
To start with, the DODAG root MUST generate a new DODAG Version,
thereby restarting the protocol, if it changes its LORS to “GLOBALLY
DOWN”, which may happen when the root has restarted after a crash or
the nodes have falsely detected its crash. It MAY also generate a
new DODAG Version if fraction value(NegativeCFRC)/value(PositiveCFRC)
approaches RNFD_CONSENSUS_THRESHOLD, so as to avoid potential
interruptions to routing.
Furthermore, the DODAG root SHOULD either generate a new DODAG
Version or increase the bit length of its CFRCs if
saturated(PositiveCFRC) becomes TRUE. This is a self-regulation
mechanism that helps adjust the CFRCs to a potentially large number
of Sentinels (see Section 6.1).
In general, issuing a new DODAG Version effectively restarts RNFD.
The DODAG root MAY thus perform this operation also in other
situations.
5.5. Activating and Deactivating the Protocol on Demand
RNFD can be activated and deactivated on demand, once per DODAG
Version. The particular policies for activating and deactivating the
protocol are outside the scope of this document. However, the
activation and deactivation SHOULD be done at the DODAG root node;
other nodes MUST comply.
More specifically, when a non-root node joins a DODAG Version, RNFD
at the node is initially inactive. The node MUST NOT activate the
protocol unless it receives for this DODAG Version a valid RNFD
Option containing some CFRCs, that is, having its Option Length field
positive. In particular, if the option accompanies the message that
causes the node to join the DODAG Version, the protocol SHOULD be
active from the moment of the joining. RNFD then remains active at
the node until it is explicitly deactivated or the node joins a new
DODAG Version. An explicit deactivation MUST take place when the
node receives an RNFD Option for the DODAG Version with no CFRCs,
that is, having its Option Length field equal to zero. When
explicitly deactivated, RNFD MUST NOT be reactivated unless the node
joins a new DODAG Version. In particular, when the first RNFD Option
received by the node has its Option Length field equal to zero, the
protocol MUST remain deactivated for the entire time the node belongs
to the current DODAG Version.
When RNFD at a node is initially inactive for a DODAG Version, the
node MUST NOT attach any RNFD Option to the messages it sends (in
particular, because it may not know the desired CFRC length—see
Section 5.6). When the protocol has been explicitly deactivated, the
node MAY also decide not to attach the option to its outgoing
Iwanicki Expires 21 March 2024 [Page 16]
Internet-Draft RNFD September 2023
messages. However, it is RECOMMENDED that it sends sufficiently many
messages with the option to the link-local all-RPL-nodes multicast
IPv6 address to allow its neighbors to learn that RNFD has been
deactivated in the current DODAG version. In particular, it MAY
reset its Trickle timer to this end but also MAY use some reactive
mechanisms, for example, replying with a unicast DIO or DIS
containing the RNFD Option with no CFRCs to a message from a neighbor
that contains the option with some CFRCs, as such a neighbor appears
not to have learned about the deactivation of RNFD.
5.6. Processing CFRCs of Incompatible Lengths
The merge() and compare() operations on CFRCs require both arguments
to be compatible, that is, to have the same bit length. However, the
processing rules for the RNFD Option (see Section 4.2) do not
necessitate this. This fact is made use of not only in the
mechanisms for activating and deactivating the protocol (see
Section 5.5), but also in mechanisms for dynamic adjustments of
CFRCs, which aim to enable deployment-specific policies (see
Section 6.1). A node thus MUST be prepared to receive the RNFD
Option with fields PosCFRC and NegCFRC of a different bit length than
the node’s own PositiveCFRC and NegativeCFRC. Assuming that it has
RNFD active and that fields PosCFRC and NegCFRC in the option have a
positive length, the node MUST react as follows.
If the bit length of fields PosCFRC and NegCFRC is the same as that
of the node’s local PositiveCFRC and NegativeCFRC, then the node MUST
perform the merges, as detailed previously (see Section 5.3).
If the bit length of fields PosCFRC and NegCFRC is smaller than that
of the node’s local PositiveCFRC and NegativeCFRC, then the node MUST
ignore the option and MAY reset its Trickle timer.
If the bit length of fields PosCFRC and NegCFRC is greater than that
of the node’s local PositiveCFRC and NegativeCFRC, then the node MUST
extend the bit length of its local CFRCs to be equal to that in the
option and set the CFRCs as follows:
* If the node’s LORS is “GLOBALLY DOWN”, then both its local CFRCs
MUST be set to infinity().
Iwanicki Expires 21 March 2024 [Page 17]
Internet-Draft RNFD September 2023
* Otherwise, they both MUST be set to zero(), and the node MUST
account for itself in so initialized CFRCs. More specifically, if
the node is Sentinel, then it MUST add itself to its PositiveCFRC,
as detailed previously. In addition, if its LORS is “LOCALLY
DOWN”, then it MUST also add itself to its NegativeCFRC, again, as
explained previously. Finally, the node MUST perform merges of
its local CFRCs and the ones received in the option (see
Section 5.3) and MAY reset its Trickle timer.
In contrast, if the node is unable to extend its local CFRCs, for
example, because it lacks resources, then it MUST stop participating
in RNFD, that is, until it joins a new DODAG Version, it MUST NOT
send the RNFD Option and MUST ignore this option in received
messages.
5.7. Summary of RNFD’s Interactions with RPL
In summary, RNFD interacts with RPL in the following manner:
* While having its LORS equal to “GLOBALLY DOWN”, RNFD prevents RPL
from routing packets and advertising upward routes in the
corresponding DODAG (see Section 5.3).
* In some scenarios, RNFD triggers RPL to issue a new DODAG Version
(see Section 5.4).
* Depending on the implementation, RNFD may cause RPL’s DIO Trickle
timer resets (see Section 5.3, Section 5.5, and Section 5.6).
* RNFD monitors events relevant to routing adjacency maintenance as
well as those affecting RPL’s DODAG parent set (see Section 5.1
and Section 5.2).
* Using RNFD entails embedding the RNFD Option into link-local RPL
control messages (see Section 4.2).
5.8. Summary of RNFD’s Constants
The following is a summary of RNFD’s constants:
RNFD_SUSPICION_GROWTH_THRESHOLD A threshold concerning the value of
Iwanicki Expires 21 March 2024 [Page 18]
Internet-Draft RNFD September 2023
fraction value(NegativeCFRC)/value(PositiveCFRC). If the value at
a Sentinel node grows at least by this threshold since the time
the node’s LORS was last set to “UP”, then the node’s LORS is set
to “SUSPECTED DOWN” or “LOCALLY DOWN”, which implies that the node
suspects or assumes a crash of the DODAG root (see Section 5.2).
The default value of the threshold is 0.12. The higher the value
the longer the detection period but the lower risk of increased
traffic due suspicion verification.
RNFD_CONSENSUS_THRESHOLD A threshold concerning the value of
fraction value(NegativeCFRC)/value(PositiveCFRC). If the value at
a Sentinel or Acceptor node reaches the threshold, then the node’s
LORS is set to “GLOBALLY DOWN”, which implies that consensus has
been reached on the DODAG root node being down (see Section 5.3).
The default value of the threshold is 0.51. The higher the value
the longer the detection period but the lower the risk of false
positives.
The means of configuring the constants at individual nodes are
outside the scope of this document.
6. Manageability Considerations
RNFD is largely self-managed, with the exception of protocol
activation and deactivation, as well as node role assignment and the
related CFRC size adjustment, for which only the aforementioned
mechanisms are defined, so as to enable adopting deployment-specific
policies. This section outlines some of the possible policies.
6.1. Role Assignment and CFRC Size Adjustment
One approach to node role and CFRC size selection is to manually
designate specific nodes as Sentinels in RNFD, assuming that they
will have chances to satisfy the necessary conditions for attaining
this role (see Section 5.1), and fixing the CFRC bit length to
accommodate these nodes.
Another approach is to automate the selection process: in principle,
any node satisfying the necessary conditions for becoming Sentinel
(see Section 5.1) can attain this role. However, in networks where
the DODAG root node has many neighbors, this approach may lead to
saturated(PositiveCFRC) quickly becoming TRUE, which—without
additional measures—may degrade RNFD’s performance. This issue can
be handled with a probabilistic solution: if PositiveCFRC becomes
saturated with little or no increase in NegativeCFRC, then a new
DODAG Version can be issued and a node satisfying the necessary
conditions can become Sentinel in this version only with probability
1/2. This process can be continued with the probability being halved
Iwanicki Expires 21 March 2024 [Page 19]
Internet-Draft RNFD September 2023
in each new DODAG Version until PositiveCFRC is no longer quickly
saturated. Another solution is to increase, potentially multiple
times the bit length of the CFRCs by the DODAG root if PositiveCFRC
becomes saturated with little or no growth in NegativeCFRC, which
does not require issuing a new DODAG Version but lengthens the RNFD
Option. In this way, again, a sufficient bit length can be
dynamically discovered or the root can conclude that a given bit
length is excessive for (some) nodes and resort to the previous
solution. Increasing the bit length can be done, for instance, by
doubling it, respecting the condition that it has to be a prime
number (see Section 4.2).
In either of the solutions, Sentinel nodes SHOULD preferably be
stable themselves and have stable links to the DODAG root.
Otherwise, they may often exhibit LORS transitions between “UP” and
“LOCALLY DOWN” or switches between Acceptor and Sentinel roles, which
gradually saturates CFRCs. Although as a mitigation the number of
such transitions and switches per node MAY be limited, having
Sentinels stable SHOULD be preferred.
6.2. Virtual DODAG Roots
RPL allows a DODAG to have a so-called virtual root, that is, a
collection of nodes coordinating to act as a single root of the
DODAG. The details of the coordination process are left open in the
specification [RFC6550] but, from RNFD’s perspective, two possible
realizations are worth consideration:
* Just a single (primary) node of the nodes comprising the virtual
root acts as the actual root of the DODAG. Only when this node
fails, does another (backup) node take over. As a result, at any
time, at most one of the nodes comprising the virtual root is the
actual root.
* More than one of the nodes comprising the virtual root act as
actual roots of the DODAG, all advertising the same Rank in the
DODAG. When some of the nodes fail, the other nodes may or may
not react in any specific way. In other words, at any time, more
than one node can be the actual root.
Iwanicki Expires 21 March 2024 [Page 20]
Internet-Draft RNFD September 2023
In the first realization, RNFD’s operation is largely unaffected.
The necessary conditions for a node to become Sentinel (Section 5.1)
guarantee that only the current primary root node is monitored by the
protocol. This SHOULD be taken into account in the policies for node
role assignment, CFRC size selection, and, possibly, the setting of
the two thresholds (Section 5.8). Moreover, when a new primary has
been elected, to avoid polluting CFRCs with observations on the
previous primary, it is RECOMMENDED to issue a new DODAG Version,
especially if the new primary has different neighbors compared to the
old one.
In the second realization, the fact that the virtual root consists of
multiple nodes is transparent to RNFD. Therefore, employing RNFD is
such a setting can be beneficial only if the nodes comprising the
virtual root may suffer from correlated crashes, for instance, due to
global power outages.
7. Security Considerations
RNFD is an extension to RPL and is thus both vulnerable to and
benefits from the security issues and solutions described in
[RFC6550] and [RFC7416]. Its specification in this document does not
introduce new traffic patterns or new messages, for which specific
mitigation techniques would be required beyond what can already be
adopted for RPL.
In particular, RNFD depends on information exchanged in the RNFD
Option. If the contents of this option were compromised, then
failure misdetection may occur. One possibility is that the DODAG
root may be falsely detected as crashed, which would result in an
inability of the nodes to route packets, at least until a new DODAG
Version is issued by the root. Another possibility is that a crash
of the DODAG root may not be detected by RNFD, in which case RPL
would have to rely on its own mechanisms. Moreover, compromising the
contents of the RNFD Option may also lead to increased traffic due to
DIO Trickle timer resets. Consequently, RNFD deployments are
RECOMMENDED to use RPL security mechanisms if there is a risk that
control information might be modified or spoofed.
Iwanicki Expires 21 March 2024 [Page 21]
Internet-Draft RNFD September 2023
In this context, RNFD’s two features are worth highlighting. First,
unless all neighbors of a DODAG root are compromised, a false
positive can always be detected by the root based on its local CFRCs.
If the frequency of such false positives becomes problematic, RNFD
can be disabled altogether, for instance, until the problem has been
diagnosed. This procedure can be largely automated at LBRs. Second,
some types of false negatives can also be detected this way. Those
that pass undetected, in turn, are likely not to have major negative
consequences on RPL apart from the lack of improvement to its
performance upon a DODAG root’s crash, at least if RPL’s other
components are not attacked as well.
8. IANA Considerations
To represent the RNFD Option, IANA is requested to allocate the value
TBD1 from the “RPL Control Message Options” registry
(https://www.iana.org/assignments/rpl/rpl.xhtml#control-message-
options) of the “Routing Protocol for Low Power and Lossy Networks
(RPL)” registry group.
9. Acknowledgements
The authors would like to acknowledge Piotr Ciolkosz and Agnieszka
Paszkowska. Agnieszka contributed to deeper understanding and
formally proving various aspects of RPL’s behavior upon an LBR crash.
Piotr in turn developed a prototype implementation of RNFD dedicated
for RPL to verify earlier performance claims.
_TODO_ More likely to follow.
10. References
10.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC6206] Levis, P., Clausen, T., Hui, J., Gnawali, O., and J. Ko,
"The Trickle Algorithm", RFC 6206, DOI 10.17487/RFC6206,
March 2011, <https://www.rfc-editor.org/info/rfc6206>.
Iwanicki Expires 21 March 2024 [Page 22]
Internet-Draft RNFD September 2023
[RFC6550] Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,
Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,
JP., and R. Alexander, "RPL: IPv6 Routing Protocol for
Low-Power and Lossy Networks", RFC 6550,
DOI 10.17487/RFC6550, March 2012,
<https://www.rfc-editor.org/info/rfc6550>.
[RFC6553] Hui, J. and JP. Vasseur, "The Routing Protocol for Low-
Power and Lossy Networks (RPL) Option for Carrying RPL
Information in Data-Plane Datagrams", RFC 6553,
DOI 10.17487/RFC6553, March 2012,
<https://www.rfc-editor.org/info/rfc6553>.
[RFC6554] Hui, J., Vasseur, JP., Culler, D., and V. Manral, "An IPv6
Routing Header for Source Routes with the Routing Protocol
for Low-Power and Lossy Networks (RPL)", RFC 6554,
DOI 10.17487/RFC6554, March 2012,
<https://www.rfc-editor.org/info/rfc6554>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
10.2. Informative References
[Ciolkosz19]
Ciolkosz, P., "Integration of the RNFD Algorithm for
Border Router Failure Detection with the RPL Standard for
Routing IPv6 Packets", Master's Thesis, University of
Warsaw, 2019.
[Iwanicki16]
Iwanicki, K., "RNFD: Routing-layer detection of DODAG
(root) node failures in low-power wireless networks",
In IPSN 2016: Proceedings of the 15th ACM/IEEE
International Conference on Information Processing in
Sensor Networks, IEEE, pp. 1--12,
DOI 10.1109/IPSN.2016.7460720, 2016,
<https://doi.org/10.1109/IPSN.2016.7460720>.
[Paszkowska19]
Paszkowska, A. and K. Iwanicki, "Failure Handling in RPL
Implementations: An Experimental Qualitative Study", In
Mission-Oriented Sensor Networks and Systems: Art and
Science (Habib M. Ammari ed.), Springer International
Publishing, pp. 49--95, DOI 10.1007/978-3-319-91146-5_3,
2019, <https://doi.org/10.1007/978-3-319-91146-5_3>.
Iwanicki Expires 21 March 2024 [Page 23]
Internet-Draft RNFD September 2023
[RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
"Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
DOI 10.17487/RFC4861, September 2007,
<https://www.rfc-editor.org/info/rfc4861>.
[RFC5184] Teraoka, F., Gogo, K., Mitsuya, K., Shibui, R., and K.
Mitani, "Unified Layer 2 (L2) Abstractions for Layer 3
(L3)-Driven Fast Handover", RFC 5184,
DOI 10.17487/RFC5184, May 2008,
<https://www.rfc-editor.org/info/rfc5184>.
[RFC6202] Loreto, S., Saint-Andre, P., Salsano, S., and G. Wilkins,
"Known Issues and Best Practices for the Use of Long
Polling and Streaming in Bidirectional HTTP", RFC 6202,
DOI 10.17487/RFC6202, April 2011,
<https://www.rfc-editor.org/info/rfc6202>.
[RFC7102] Vasseur, JP., "Terms Used in Routing for Low-Power and
Lossy Networks", RFC 7102, DOI 10.17487/RFC7102, January
2014, <https://www.rfc-editor.org/info/rfc7102>.
[RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
Constrained-Node Networks", RFC 7228,
DOI 10.17487/RFC7228, May 2014,
<https://www.rfc-editor.org/info/rfc7228>.
[RFC7416] Tsao, T., Alexander, R., Dohler, M., Daza, V., Lozano, A.,
and M. Richardson, Ed., "A Security Threat Analysis for
the Routing Protocol for Low-Power and Lossy Networks
(RPLs)", RFC 7416, DOI 10.17487/RFC7416, January 2015,
<https://www.rfc-editor.org/info/rfc7416>.
[Whang90] Whang, K.-Y., Vander-Zanden, B.T., and H.M. Taylor, "A
Linear-time Probabilistic Counting Algorithm for Database
Applications", In ACM Transactions on Database Systems,
DOI 10.1145/78922.78925, 1990,
<https://doi.org/10.1145/78922.78925>.
Author's Address
Konrad Iwanicki
University of Warsaw
Banacha 2
02-097 Warszawa
Poland
Phone: +48 22 55 44 428
Email: iwanicki@mimuw.edu.pl
Iwanicki Expires 21 March 2024 [Page 24]