Internet DRAFT - draft-ietf-rtgwg-routing-types
draft-ietf-rtgwg-routing-types
Network Working Group X. Liu
Internet-Draft Jabil
Intended status: Standards Track Y. Qu
Expires: April 16, 2018 Futurewei Technologies, Inc.
A. Lindem
Cisco Systems
C. Hopps
Deutsche Telekom
L. Berger
LabN Consulting, L.L.C.
October 13, 2017
Routing Area Common YANG Data Types
draft-ietf-rtgwg-routing-types-17
Abstract
This document defines a collection of common data types using the
YANG data modeling language. These derived common types are designed
to be imported by other modules defined in the routing area.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on April 16, 2018.
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
Liu, et al. Expires April 16, 2018 [Page 1]
Internet-Draft Routing Types YANG October 2017
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 2
2. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. IETF Routing Types YANG Module . . . . . . . . . . . . . . . 6
4. IANA Routing Types YANG Module . . . . . . . . . . . . . . . 22
5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 31
5.1. IANA-Maintained iana-routing-types Module . . . . . . . . 32
6. Security Considerations . . . . . . . . . . . . . . . . . . . 33
7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 33
8. References . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.1. Normative References . . . . . . . . . . . . . . . . . . 34
8.2. Informative References . . . . . . . . . . . . . . . . . 34
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 36
1. Introduction
The YANG [RFC6020] [RFC7950] is a data modeling language used to
model configuration data, state data, Remote Procedure Calls, and
notifications for network management protocols. The YANG language
supports a small set of built-in data types and provides mechanisms
to derive other types from the built-in types.
This document introduces a collection of common data types derived
from the built-in YANG data types. The derived types are designed to
be the common types applicable for modeling in the routing area.
1.1. Terminology
The terminology for describing YANG data models is found in
[RFC7950].
2. Overview
This document defines the two models for common routing types, ietf-
routing-types and iana-routing-types. The only module imports are
from [RFC6991]. The ietf-routing-types model contains common routing
types other than those corresponding directly to IANA mappings.
These include:
router-id
Liu, et al. Expires April 16, 2018 [Page 2]
Internet-Draft Routing Types YANG October 2017
Router Identifiers are commonly used to identify nodes in routing
and other control plane protocols. An example usage of router-id
can be found in [I-D.ietf-ospf-yang].
route-target
Route Targets (RTs) are commonly used to control the distribution
of virtual routing and forwarding (VRF) information, see
[RFC4364], in support of BGP/MPLS IP virtual private networks
(VPNs) and BGP/MPLS Ethernet VPNs [RFC7432]. An example usage can
be found in [I-D.ietf-bess-l2vpn-yang].
ipv6-route-target
IPv6 Route Targets (RTs) are similar to standard Route Targets
only they are IPv6 Address Specific BGP Extended Communities as
described in [RFC5701]. An IPv6 Route Target is 20 octets and
includes an IPv6 address as the global administrator.
route-target-type
This type defines the import and export rules of Route Targets, as
described in Section 4.3.1 of [RFC4364]. An example usage can be
found in [I-D.ietf-idr-bgp-model].
route-distinguisher
Route Distinguishers (RDs) are commonly used to identify separate
routes in support of virtual private networks (VPNs). For
example, in [RFC4364], RDs are commonly used to identify
independent VPNs and VRFs, and more generally, to identify
multiple routes to the same prefix. An example usage can be found
in [I-D.ietf-idr-bgp-model].
route-origin
Route Origin is commonly used to indicate the Site of Origin for
Routing and forwarding (VRF) information, see [RFC4364], in
support of BGP/MPLS IP virtual private networks (VPNs) and BGP/
MPLS Ethernet VPNs [RFC7432]. An example usage can be found in
[I-D.ietf-bess-l3vpn-yang].
ipv6-route-origin
An IPv6 Route Origin would also be used to indicate the Site of
Origin for Routing and forwarding (VRF) information, see
[RFC4364], in support of virtual private networks (VPNs). IPv6
Route Origins are IPv6 Address Specific BGP Extended Communities
as described in [RFC5701]. An IPv6 Route Origin is 20 octets and
includes an IPv6 address as the global administrator.
ipv4-multicast-group-address
Liu, et al. Expires April 16, 2018 [Page 3]
Internet-Draft Routing Types YANG October 2017
This type defines the representation of an IPv4 multicast group
address, which is in the range from 224.0.0.0 to 239.255.255.255.
An example usage can be found in [I-D.ietf-pim-yang].
ipv6-multicast-group-address
This type defines the representation of an IPv6 multicast group
address, which is in the range of FF00::/8. An example usage can
be found in [I-D.ietf-pim-yang].
ip-multicast-group-address
This type represents an IP multicast group address and is IP
version neutral. The format of the textual representation implies
the IP version. An example usage can be found in
[I-D.ietf-pim-yang].
ipv4-multicast-source-address
IPv4 source address type for use in multicast control protocols.
This type also allows the indication of wildcard sources, i.e.,
"*". An example of where this type may/will be used is
[I-D.ietf-pim-yang].
ipv6-multicast-source-address
IPv6 source address type for use in multicast control protocols.
This type also allows the indication of wildcard sources, i.e.,
"*". An example of where this type may/will be used is
[I-D.ietf-pim-yang].
bandwidth-ieee-float32
Bandwidth in IEEE 754 floating point 32-bit binary format
[IEEE754]. Commonly used in Traffic Engineering control plane
protocols. An example of where this type may/will be used is
[I-D.ietf-ospf-yang].
link-access-type
This type identifies the IGP link type. An example of where this
type may/will be used is [I-D.ietf-ospf-yang].
timer-multiplier
This type is used in conjunction with a timer-value type. It is
generally used to indicate define the number of timer-value
intervals that may expire before a specific event must occur.
Examples of this include the arrival of any BFD packets, see
[RFC5880] Section 6.8.4, or hello_interval in [RFC3209]. Example
of where this type may/will be used is [I-D.ietf-idr-bgp-model]
and [I-D.ietf-teas-yang-rsvp].
timer-value-seconds16
Liu, et al. Expires April 16, 2018 [Page 4]
Internet-Draft Routing Types YANG October 2017
This type covers timers which can be set in seconds, not set, or
set to infinity. This type supports a range of values that can be
represented in a uint16 (2 octets). An example of where this type
may/will be used is [I-D.ietf-ospf-yang].
timer-value-seconds32
This type covers timers which can be set in seconds, not set, or
set to infinity. This type supports a range of values that can be
represented in a uint32 (4 octets). An example of where this type
may/will be used is [I-D.ietf-teas-yang-rsvp].
timer-value-milliseconds
This type covers timers which can be set in milliseconds, not set,
or set to infinity. This type supports a range of values that can
be represented in a uint32 (4 octets). Examples of where this
type may/will be used include [I-D.ietf-teas-yang-rsvp] and
[I-D.ietf-bfd-yang].
percentage
This type defines a percentage with a range of 0-100%. An example
usage can be found in [I-D.ietf-idr-bgp-model].
timeticks64
This type is based on the timeticks type defined in [RFC6991] but
with 64-bit precision. It represents the time in hundredths of a
second between two epochs. An example usage can be found in
[I-D.ietf-idr-bgp-model].
uint24
This type defines a 24-bit unsigned integer. It is used by
[I-D.ietf-ospf-yang].
generalized-label
This type represents a generalized label for Generalized Multi-
Protocol Label Switching (GMPLS) [RFC3471]. The Generalized Label
does not identify its type, which is known from the context. An
example usage can be found in [I-D.ietf-teas-yang-te].
mpls-label-special-purpose
This type represents the special-purpose Multiprotocol Label
Switching (MPLS) label values [RFC7274]. An example usage can be
found in [I-D.ietf-mpls-base-yang].
mpls-label-general-use
The 20 bits label values in an MPLS label stack entry, specified
in [RFC3032]. This label value does not include the encodings of
Traffic Class and TTL (time to live). The label range specified
by this type is for general use, with special-purpose MPLS label
Liu, et al. Expires April 16, 2018 [Page 5]
Internet-Draft Routing Types YANG October 2017
values excluded. An example usage can be found in
[I-D.ietf-mpls-base-yang].
mpls-label
The 20 bits label values in an MPLS label stack entry, specified
in [RFC3032]. This label value does not include the encodings of
Traffic Class and TTL (time to live). The label range specified
by this type covers the general use values and the special-purpose
label values. An example usage can be found in
[I-D.ietf-mpls-base-yang].
This document defines the following YANG groupings:
mpls-label-stack
This grouping defines a reusable collection of schema nodes
representing an MPLS label stack [RFC3032]. An example usage can
be found in [I-D.ietf-mpls-base-yang].
vpn-route-targets
This grouping defines a reusable collection of schema nodes
representing Route Target import-export rules used in the BGP
enabled Virtual Private Networks (VPNs). [RFC4364][RFC4664]. An
example usage can be found in [I-D.ietf-bess-l2vpn-yang].
The iana-routing-types model contains common routing types
corresponding directly to IANA mappings. These include:
address-family
This type defines values for use in address family identifiers.
The values are based on the IANA Address Family Numbers Registry
[IANA-ADDRESS-FAMILY-REGISTRY]. An example usage can be found in
[I-D.ietf-idr-bgp-model].
subsequent-address-family
This type defines values for use in subsequent address family
(SAFI) identifiers. The values are based on the IANA Subsequent
Address Family Identifiers (SAFI) Parameters Registry
[IANA-SAFI-REGISTRY].
3. IETF Routing Types YANG Module
<CODE BEGINS> file "ietf-routing-types@2017-10-13.yang"
module ietf-routing-types {
namespace "urn:ietf:params:xml:ns:yang:ietf-routing-types";
prefix rt-types;
import ietf-yang-types {
prefix yang;
Liu, et al. Expires April 16, 2018 [Page 6]
Internet-Draft Routing Types YANG October 2017
}
import ietf-inet-types {
prefix inet;
}
organization
"IETF RTGWG - Routing Area Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/rtgwg/>
WG List: <mailto:rtgwg@ietf.org>
Editor: Xufeng Liu
<mailto:Xufeng_Liu@jabail.com>
Yingzhen Qu
<mailto:yingzhen.qu@huawei.com>
Acee Lindem
<mailto:acee@cisco.com>
Christian Hopps
<mailto:chopps@chopps.org>
Lou Berger
<mailto:lberger@labn.com>";
description
"This module contains a collection of YANG data types
considered generally useful for routing protocols.
Copyright (c) 2017 IETF Trust and the persons
identified as authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC XXXX; see
the RFC itself for full legal notices.";
reference "RFC XXXX";
revision 2017-10-13 {
description "Initial revision.";
reference "RFC TBD: Routing YANG Data Types";
}
/*** Identities related to MPLS/GMPLS ***/
identity mpls-label-special-purpose-value {
description
Liu, et al. Expires April 16, 2018 [Page 7]
Internet-Draft Routing Types YANG October 2017
"Base identity for deriving identities describing
special-purpose Multiprotocol Label Switching (MPLS) label
values.";
reference
"RFC7274: Allocating and Retiring Special-Purpose MPLS
Labels.";
}
identity ipv4-explicit-null-label {
base mpls-label-special-purpose-value;
description
"This identity represents the IPv4 Explicit NULL Label.";
reference "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
}
identity router-alert-label {
base mpls-label-special-purpose-value;
description
"This identity represents the Router Alert Label.";
reference "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
}
identity ipv6-explicit-null-label {
base mpls-label-special-purpose-value;
description
"This identity represents the IPv6 Explicit NULL Label.";
reference "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
}
identity implicit-null-label {
base mpls-label-special-purpose-value;
description
"This identity represents the Implicit NULL Label.";
reference "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
}
identity entropy-label-indicator {
base mpls-label-special-purpose-value;
description
"This identity represents the Entropy Label Indicator.";
reference
"RFC6790: The Use of Entropy Labels in MPLS Forwarding.
Sections 3 and 10.1.";
}
identity gal-label {
base mpls-label-special-purpose-value;
description
Liu, et al. Expires April 16, 2018 [Page 8]
Internet-Draft Routing Types YANG October 2017
"This identity represents the Generic Associated Channel
Label (GAL).";
reference
"RFC5586: MPLS Generic Associated Channel.
Sections 4 and 10.";
}
identity oam-alert-label {
base mpls-label-special-purpose-value;
description
"This identity represents the OAM Alert Label.";
reference
"RFC3429: Assignment of the 'OAM Alert Label' for
Multiprotocol Label Switching Architecture (MPLS)
Operation and Maintenance (OAM) Functions.
Sections 3 and 6.";
}
identity extension-label {
base mpls-label-special-purpose-value;
description
"This identity represents the Extension Label.";
reference
"RFC7274: Allocating and Retiring Special-Purpose MPLS
Labels. Sections 3.1 and 5.";
}
/*** Collection of types related to routing ***/
typedef router-id {
type yang:dotted-quad;
description
"A 32-bit number in the dotted quad format assigned to each
router. This number uniquely identifies the router within
an Autonomous System.";
}
/*** Collection of types related to VPN ***/
typedef route-target {
type string {
pattern
'(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|'
+ '42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|'
+ '42949[0-5][0-9]{4}|'
Liu, et al. Expires April 16, 2018 [Page 9]
Internet-Draft Routing Types YANG October 2017
+ '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|'
+ '42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|'
+ '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|'
+ '25[0-5])\.){3}([0-9]|[1-9][0-9]|'
+ '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|'
+ '655[0-2][0-9]|'
+ '65[0-4][0-9]{2}|6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
+ '(2:(429496729[0-5]|42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|'
+ '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|'
+ '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
+ '(6(:[a-fA-F0-9]{2}){6})|'
+ '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):'
+ '[0-9a-fA-F]{1,12})';
}
description
"A route target is an 8-octet BGP extended community
initially identifying a set of sites in a BGP
VPN (RFC 4364). However, it has since taken on a more
general role in BGP route filtering.
A route target consists of two or three fields:
a 2-octet type field, an administrator field,
and, optionally, an assigned number field.
According to the data formats for type 0, 1, 2, and 6
defined in RFC4360, RFC5668, and RFC7432, the encoding
pattern is defined as:
0:2-octet-asn:4-octet-number
1:4-octet-ipv4addr:2-octet-number
2:4-octet-asn:2-octet-number.
6:6-octet-mac-address.
Additionally, a generic pattern is defined for future
route target types:
2-octet-other-hex-number:6-octet-hex-number
Some valid examples are: 0:100:100, 1:1.1.1.1:100,
2:1234567890:203 and 6:26:00:08:92:78:00";
reference
Liu, et al. Expires April 16, 2018 [Page 10]
Internet-Draft Routing Types YANG October 2017
"RFC4360: BGP Extended Communities Attribute.
RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs)
RFC5668: 4-Octet AS Specific BGP Extended Community.
RFC7432: BGP MPLS-Based Ethernet VPN";
}
typedef ipv6-route-target {
type string {
pattern
'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
+ '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
+ '(((25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])\.){3}'
+ '(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])))'
+ ':'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)';
pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
+ '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))'
+ ':'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)';
}
description
"An IPv6 route target is a 20-octet BGP IPv6 address
specific extended community serving the same function
as a standard 8-octet route target only allowing for
an IPv6 address as the global administrator. The format
is <ipv6-address:2-octet-number>.
Some valid examples are: 2001:DB8::1:6544 and
2001:DB8::5eb1:791:6b37:17958";
reference
"RFC5701: IPv6 Address Specific BGP Extended Community
Attribute";
}
typedef route-target-type {
type enumeration {
enum "import" {
value 0;
description
"The route target applies to route import.";
}
enum "export" {
value 1;
description
Liu, et al. Expires April 16, 2018 [Page 11]
Internet-Draft Routing Types YANG October 2017
"The route target applies to route export.";
}
enum "both" {
value 2;
description
"The route target applies to both route import and
route export.";
}
}
description
"Indicates the role a route target takes
in route filtering.";
reference "RFC4364: BGP/MPLS IP Virtual Private Networks
(VPNs).";
}
typedef route-distinguisher {
type string {
pattern
'(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|'
+ '42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|'
+ '42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|'
+ '42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|'
+ '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|'
+ '25[0-5])\.){3}([0-9]|[1-9][0-9]|'
+ '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|'
+ '655[0-2][0-9]|'
+ '65[0-4][0-9]{2}|6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
+ '(2:(429496729[0-5]|42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|'
+ '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|'
+ '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
+ '(6(:[a-fA-F0-9]{2}){6})|'
+ '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):'
+ '[0-9a-fA-F]{1,12})';
}
description
Liu, et al. Expires April 16, 2018 [Page 12]
Internet-Draft Routing Types YANG October 2017
"A route distinguisher is an 8-octet value used to
distinguish routes from different BGP VPNs (RFC 4364).
As per RFC 4360, a route distinguisher will have the same
format as a route target and will consist of two or three
fields including a 2-octet type field, an administrator
field, and, optionally, an assigned number field.
According to the data formats for type 0, 1, 2, and 6
defined in RFC4360, RFC5668, and RFC7432, the encoding
pattern is defined as:
0:2-octet-asn:4-octet-number
1:4-octet-ipv4addr:2-octet-number
2:4-octet-asn:2-octet-number.
6:6-octet-mac-address.
Additionally, a generic pattern is defined for future
route discriminator types:
2-octet-other-hex-number:6-octet-hex-number
Some valid examples are: 0:100:100, 1:1.1.1.1:100,
2:1234567890:203 and 6:26:00:08:92:78:00";
reference
"RFC4360: BGP Extended Communities Attribute.
RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs)
RFC5668: 4-Octet AS Specific BGP Extended Community.
RFC7432: BGP MPLS-Based Ethernet VPN";
}
typedef route-origin {
type string {
pattern
'(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|'
+ '42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|'
+ '42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|'
+ '42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|'
+ '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|'
+ '25[0-5])\.){3}([0-9]|[1-9][0-9]|'
+ '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|'
+ '655[0-2][0-9]|'
+ '65[0-4][0-9]{2}|6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
Liu, et al. Expires April 16, 2018 [Page 13]
Internet-Draft Routing Types YANG October 2017
+ '(2:(429496729[0-5]|42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|'
+ '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|'
+ '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
+ '(6(:[a-fA-F0-9]{2}){6})|'
+ '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):'
+ '[0-9a-fA-F]{1,12})';
}
description
"A route origin is an 8-octet BGP extended community
identifying the set of sites where the BGP route
originated (RFC 4364). A route target consists of two
or three fields: a 2-octet type field, an administrator
field, and, optionally, an assigned number field.
According to the data formats for type 0, 1, 2, and 6
defined in RFC4360, RFC5668, and RFC7432, the encoding
pattern is defined as:
0:2-octet-asn:4-octet-number
1:4-octet-ipv4addr:2-octet-number
2:4-octet-asn:2-octet-number.
6:6-octet-mac-address.
Additionally, a generic pattern is defined for future
route origin types:
2-octet-other-hex-number:6-octet-hex-number
Some valid examples are: 0:100:100, 1:1.1.1.1:100,
2:1234567890:203 and 6:26:00:08:92:78:00";
reference
"RFC4360: BGP Extended Communities Attribute.
RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs)
RFC5668: 4-Octet AS Specific BGP Extended Community.
RFC7432: BGP MPLS-Based Ethernet VPN";
}
typedef ipv6-route-origin {
type string {
pattern
'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
+ '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
Liu, et al. Expires April 16, 2018 [Page 14]
Internet-Draft Routing Types YANG October 2017
+ '(((25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])\.){3}'
+ '(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])))'
+ ':'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)';
pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
+ '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))'
+ ':'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)';
}
description
"An IPv6 route origin is a 20-octet BGP IPv6 address
specific extended community serving the same function
as a standard 8-octet route only allowing for
an IPv6 address as the global administrator. The format
is <ipv6-address:2-octet-number>.
Some valid examples are: 2001:DB8::1:6544 and
2001:DB8::5eb1:791:6b37:17958";
reference
"RFC5701: IPv6 Address Specific BGP Extended Community
Attribute";
}
/*** Collection of types common to multicast ***/
typedef ipv4-multicast-group-address {
type inet:ipv4-address {
pattern '(2((2[4-9])|(3[0-9]))\.).*';
}
description
"This type represents an IPv4 multicast group address,
which is in the range from 224.0.0.0 to 239.255.255.255.";
reference "RFC1112: Host Extensions for IP Multicasting.";
}
typedef ipv6-multicast-group-address {
type inet:ipv6-address {
pattern
'(([fF]{2}[0-9a-fA-F]{2}):).*';
}
description
"This type represents an IPv6 multicast group address,
which is in the range of FF00::/8.";
reference
Liu, et al. Expires April 16, 2018 [Page 15]
Internet-Draft Routing Types YANG October 2017
"RFC4291: IP Version 6 Addressing Architecture. Sec 2.7.
RFC7346: IPv6 Multicast Address Scopes.";
}
typedef ip-multicast-group-address {
type union {
type ipv4-multicast-group-address;
type ipv6-multicast-group-address;
}
description
"This type represents a version-neutral IP multicast group
address. The format of the textual representation implies
the IP version.";
}
typedef ipv4-multicast-source-address {
type union {
type enumeration {
enum "*" {
description
"Any source address.";
}
}
type inet:ipv4-address;
}
description
"Multicast source IPv4 address type.";
}
typedef ipv6-multicast-source-address {
type union {
type enumeration {
enum "*" {
description
"Any source address.";
}
}
type inet:ipv6-address;
}
description
"Multicast source IPv6 address type.";
}
/*** Collection of types common to protocols ***/
typedef bandwidth-ieee-float32 {
type string {
pattern
Liu, et al. Expires April 16, 2018 [Page 16]
Internet-Draft Routing Types YANG October 2017
'0[xX](0((\.0?)?[pP](\+)?0?|(\.0?))|'
+ '1(\.([0-9a-fA-F]{0,5}[02468aAcCeE]?)?)?[pP](\+)?(12[0-7]|'
+ '1[01][0-9]|0?[0-9]?[0-9])?)';
}
description
"Bandwidth in IEEE 754 floating point 32-bit binary format:
(-1)**(S) * 2**(Exponent-127) * (1 + Fraction),
where Exponent uses 8 bits, and Fraction uses 23 bits.
The units are octets per second.
The encoding format is the external hexadecimal-significant
character sequences specified in IEEE 754 and C99. The
format is restricted to be normalized, non-negative, and
non-fraction: 0x1.hhhhhhp{+}d, 0X1.HHHHHHP{+}D, or 0x0p0,
where 'h' and 'H' are hexadecimal digits and'd' and 'D' are
integers in the range of [0..127].
When six hexadecimal digits are used for 'hhhhhh' or
'HHHHHH', the least significant digit must be an even
number. 'x' and 'X' indicate hexadecimal; 'p' and 'P'
indicate power of two. Some examples are: 0x0p0, 0x1p10, and
0x1.abcde2p+20";
reference
"IEEE Std 754-2008: IEEE Standard for Floating-Point
Arithmetic.";
}
typedef link-access-type {
type enumeration {
enum "broadcast" {
description
"Specify broadcast multi-access network.";
}
enum "non-broadcast-multiaccess" {
description
"Specify Non-Broadcast Multi-Access (NBMA) network.";
}
enum "point-to-multipoint" {
description
"Specify point-to-multipoint network.";
}
enum "point-to-point" {
description
"Specify point-to-point network.";
}
}
description
"Link access type.";
}
Liu, et al. Expires April 16, 2018 [Page 17]
Internet-Draft Routing Types YANG October 2017
typedef timer-multiplier {
type uint8;
description
"The number of timer value intervals that should be
interpreted as a failure.";
}
typedef timer-value-seconds16 {
type union {
type uint16 {
range "1..65535";
}
type enumeration {
enum "infinity" {
description
"The timer is set to infinity.";
}
enum "not-set" {
description
"The timer is not set.";
}
}
}
units "seconds";
description
"Timer value type, in seconds (16-bit range).";
}
typedef timer-value-seconds32 {
type union {
type uint32 {
range "1..4294967295";
}
type enumeration {
enum "infinity" {
description
"The timer is set to infinity.";
}
enum "not-set" {
description
"The timer is not set.";
}
}
}
units "seconds";
description
"Timer value type, in seconds (32-bit range).";
}
Liu, et al. Expires April 16, 2018 [Page 18]
Internet-Draft Routing Types YANG October 2017
typedef timer-value-milliseconds {
type union {
type uint32 {
range "1..4294967295";
}
type enumeration {
enum "infinity" {
description
"The timer is set to infinity.";
}
enum "not-set" {
description
"The timer is not set.";
}
}
}
units "milliseconds";
description
"Timer value type, in milliseconds.";
}
typedef percentage {
type uint8 {
range "0..100";
}
description
"Integer indicating a percentage value";
}
typedef timeticks64 {
type uint64;
description
"This type is based on the timeticks type defined in
RFC 6991, but with 64-bit width. It represents the time,
modulo 2^64, in hundredths of a second between two epochs.";
reference "RFC 6991 - Common YANG Data Types";
}
typedef uint24 {
type uint32 {
range "0 .. 16777215";
}
description
"24-bit unsigned integer";
}
/*** Collection of types related to MPLS/GMPLS ***/
Liu, et al. Expires April 16, 2018 [Page 19]
Internet-Draft Routing Types YANG October 2017
typedef generalized-label {
type binary;
description
"Generalized label. Nodes sending and receiving the
Generalized Label are aware of the link-specific
label context and type.";
reference "RFC3471: Section 3.2";
}
typedef mpls-label-special-purpose {
type identityref {
base mpls-label-special-purpose-value;
}
description
"This type represents the special-purpose Multiprotocol Label
Switching (MPLS) label values.";
reference
"RFC3032: MPLS Label Stack Encoding.
RFC7274: Allocating and Retiring Special-Purpose MPLS
Labels.";
}
typedef mpls-label-general-use {
type uint32 {
range "16..1048575";
}
description
"The 20-bit label values in an MPLS label stack entry,
specified in RFC3032. This label value does not include
the encodings of Traffic Class and TTL (time to live).
The label range specified by this type is for general use,
with special-purpose MPLS label values excluded.";
reference "RFC3032: MPLS Label Stack Encoding.";
}
typedef mpls-label {
type union {
type mpls-label-special-purpose;
type mpls-label-general-use;
}
description
"The 20-bit label values in an MPLS label stack entry,
specified in RFC3032. This label value does not include
the encodings of Traffic Class and TTL (time to live).";
reference "RFC3032: MPLS Label Stack Encoding.";
}
/*** Groupings **/
Liu, et al. Expires April 16, 2018 [Page 20]
Internet-Draft Routing Types YANG October 2017
grouping mpls-label-stack {
description
"This grouping specifies an MPLS label stack. The label
stack is encoded as a list of label stack entries. The
list key is an identifier which indicates relative
ordering of each entry, with the lowest value identifier
corresponding to the top of the label stack.";
container mpls-label-stack {
description
"Container for a list of MPLS label stack entries.";
list entry {
key "id";
description
"List of MPLS label stack entries.";
leaf id {
type uint8;
description
"Identifies the entry in a sequence of MPLS label
stack entries. An entry with a smaller identifier
value precedes an entry with a larger identifier
value in the label stack. The value of this ID has
no semantic meaning other than relative ordering
and referencing the entry.";
}
leaf label {
type rt-types:mpls-label;
description
"Label value.";
}
leaf ttl {
type uint8;
description
"Time to Live (TTL).";
reference "RFC3032: MPLS Label Stack Encoding.";
}
leaf traffic-class {
type uint8 {
range "0..7";
}
description
"Traffic Class (TC).";
reference
"RFC5462: Multiprotocol Label Switching (MPLS) Label
Stack Entry: 'EXP' Field Renamed to 'Traffic Class'
Field.";
}
}
}
Liu, et al. Expires April 16, 2018 [Page 21]
Internet-Draft Routing Types YANG October 2017
}
grouping vpn-route-targets {
description
"A grouping that specifies Route Target import-export rules
used in the BGP enabled Virtual Private Networks (VPNs).";
reference
"RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs).
RFC4664: Framework for Layer 2 Virtual Private Networks
(L2VPNs)";
list vpn-target {
key "route-target";
description
"List of Route Targets.";
leaf route-target {
type rt-types:route-target;
description
"Route Target value";
}
leaf route-target-type {
type rt-types:route-target-type;
mandatory true;
description
"Import/export type of the Route Target.";
}
}
}
}
<CODE ENDS>
4. IANA Routing Types YANG Module
<CODE BEGINS> file "iana-routing-types@2017-09-19.yang"
module iana-routing-types {
namespace "urn:ietf:params:xml:ns:yang:iana-routing-types";
prefix iana-rt-types;
organization
"IANA";
contact
" Internet Assigned Numbers Authority
Postal: ICANN
4676 Admiralty Way, Suite 330
Marina del Rey, CA 90292
Tel: +1 310 823 9358
Liu, et al. Expires April 16, 2018 [Page 22]
Internet-Draft Routing Types YANG October 2017
<mailto:iana@iana.org>";
description
"This module contains a collection of YANG data types
considered defined by IANA and used for routing
protocols.
Copyright (c) 2017 IETF Trust and the persons
identified as authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC XXXX; see
the RFC itself for full legal notices.";
reference "RFC XXXX";
revision 2017-09-19 {
description "Initial revision.";
reference "RFC TBD: IANA Routing YANG Data Types";
}
/*** Collection of IANA types related to routing ***/
/*** IANA address family enumeration ***/
typedef address-family {
type enumeration {
enum ipv4 {
value 1;
description "IPv4 Address Family";
}
enum ipv6 {
value 2;
description "IPv6 Address Family";
}
enum nsap {
value 3;
description "OSI Network Service Access Point (NSAP)
Address Family";
}
enum hdlc {
value 4;
Liu, et al. Expires April 16, 2018 [Page 23]
Internet-Draft Routing Types YANG October 2017
description "High-Level Data Link Control (HDLC)
Address Family";
}
enum bbn1822 {
value 5;
description "Bolt, Beranek, and Newman Report
1822 (BBN 1822) Address Family";
}
enum ieee802 {
value 6;
description "IEEE 802 Committee Address Family (aka,
MAC address)";
}
enum e163 {
value 7;
description "ITU-T E.163 Address Family";
}
enum e164 {
value 8;
description "ITU-T E.164 (SMDS, Frame Relay, ATM)
Address Family";
}
enum f69 {
value 9;
description "ITU-T F.69 (Telex) Address Family";
}
enum x121 {
value 10;
description "ITU-T X.121 (X.25, Frame Relay)
Address Family";
}
enum ipx {
value 11;
description "Novell Internetwork Packet Exchange (IPX)
Address Family";
}
enum appletalk {
value 12;
description "Apple AppleTalk Address Family";
Liu, et al. Expires April 16, 2018 [Page 24]
Internet-Draft Routing Types YANG October 2017
}
enum decnet-iv {
value 13;
description "Digital Equipment DECnet Phase IV
Address Family";
}
enum vines {
value 14;
description "Banyan Vines Address Family";
}
enum e164-nsap {
value 15;
description "ITU-T E.164 with NSAP sub-address
Address Family";
}
enum dns {
value 16;
description "Domain Name System (DNS) Address
Family";
}
enum distinguished-name {
value 17;
description "Distinguished Name Address Family";
}
enum as-num {
value 18;
description "AS Number Address Family";
}
enum xtp-v4 {
value 19;
description "Xpress Transport Protocol (XTP) over IPv4
Address Family";
}
enum xtp-v6 {
value 20;
description "Xpress Transport Protocol (XTP) over IPv6
Address Family";
}
enum xtp-native {
Liu, et al. Expires April 16, 2018 [Page 25]
Internet-Draft Routing Types YANG October 2017
value 21;
description "Xpress Transport Protocol (XTP) native mode
Address Family";
}
enum fc-port {
value 22;
description "Fibre Channel (FC) World-Wide Port Name
Address Family";
}
enum fc-node {
value 23;
description "Fibre Channel (FC) World-Wide Node Name
Address Family";
}
enum gwid {
value 24;
description
"ATM Gateway Identifier (GWID) Number Address Family";
}
enum l2vpn {
value 25;
description "Layer-2 VPN (L2VPN) Address Family";
}
enum mpls-tp-section-eid {
value 26;
description "MPLS-TP Section Endpoint Identifier
Address Family";
}
enum mpls-tp-lsp-eid {
value 27;
description "MPLS-TP LSP Endpoint Identifier
Address Family";
}
enum mpls-tp-pwe-eid {
value 28;
description "MPLS-TP Pseudowire Endpoint Identifier
Address Family";
}
enum mt-v4 {
value 29;
Liu, et al. Expires April 16, 2018 [Page 26]
Internet-Draft Routing Types YANG October 2017
description "Multi-Topology IPv4 Address Family";
}
enum mt-v6 {
value 30;
description "Multi-Topology IPv6 Address Family";
}
enum eigrp-common-sf {
value 16384;
description "Enhanced Interior Gateway Routing Protocol
(EIGRP) Common Service Family Address
Family";
}
enum eigrp-v4-sf {
value 16385;
description "Enhanced Interior Gateway Routing Protocol
(EIGRP) IPv4 Service Family Address Family";
}
enum eigrp-v6-sf {
value 16386;
description "Enhanced Interior Gateway Routing Protocol
(EIGRP) IPv6 Service Family Address Family";
}
enum lcaf {
value 16387;
description "LISP Canonical Address Format (LCAF)
Address Family";
}
enum bgp-ls {
value 16388;
description "Border Gateway Protocol - Link State (BGP-LS)
Address Family";
}
enum mac-48 {
value 16389;
description "IEEE 48-bit Media Access Control (MAC)
Address Family";
}
enum mac-64 {
value 16390;
description "IEEE 64-bit Media Access Control (MAC)
Liu, et al. Expires April 16, 2018 [Page 27]
Internet-Draft Routing Types YANG October 2017
Address Family";
}
enum trill-oui {
value 16391;
description "TRILL IEEE Organizationally Unique
Identifier (OUI) Address Family";
}
enum trill-mac-24 {
value 16392;
description "TRILL Final 3 octets of 48-bit MAC
address Address Family";
}
enum trill-mac-40 {
value 16393;
description "TRILL Final 5 octets of 64-bit MAC
address Address Family";
}
enum ipv6-64 {
value 16394;
description "First 8 octets (64-bits) of an IPv6
address Address Family";
}
enum trill-rbridge-port-id {
value 16395;
description "TRILL Remote Bridge (RBridge) Port ID
Address Family";
}
enum trill-nickname {
value 16396;
description "TRILL Nickname Address Family";
}
}
description "Enumeration containing all the IANA
defined address families.";
}
/*** SAFIs for Multi-Protocol BGP enumeration ***/
typedef bgp-safi {
type enumeration {
enum unicast-safi {
Liu, et al. Expires April 16, 2018 [Page 28]
Internet-Draft Routing Types YANG October 2017
value 1;
description "Unicast SAFI";
}
enum multicast-safi {
value 2;
description "Multicast SAFI";
}
enum labeled-unicast-safi {
value 4;
description "Labeled Unicast SAFI";
}
enum multicast-vpn-safi {
value 5;
description "Multicast VPN SAFI";
}
enum pseudowire-safi {
value 6;
description "Multi-segment Pseudowire VPN SAFI";
}
enum tunnel-encap-safi {
value 7;
description "Tunnel Encap SAFI";
}
enum mcast-vpls-safi {
value 8;
description "Multicast Virtual Private LAN Service
(VPLS) SAFI";
}
enum tunnel-safi {
value 64;
description "Tunnel SAFI";
}
enum vpls-safi {
value 65;
description "Virtual Private LAN Service (VPLS) SAFI";
}
enum mdt-safi {
value 66;
description "Multicast Distribution Tree (MDT) SAFI";
Liu, et al. Expires April 16, 2018 [Page 29]
Internet-Draft Routing Types YANG October 2017
}
enum v4-over-v6-safi {
value 67;
description "IPv4 over IPv6 SAFI";
}
enum v6-over-v4-safi {
value 68;
description "IPv6 over IPv4 SAFI";
}
enum l1-vpn-auto-discovery-safi {
value 69;
description "Layer-1 VPN Auto Discovery SAFI";
}
enum evpn-safi {
value 70;
description "Ethernet VPN (EVPN) SAFI";
}
enum bgp-ls-safi {
value 71;
description "BGP Link-State (BGP-LS) SAFI";
}
enum bgp-ls-vpn-safi {
value 72;
description "BGP Link-State (BGP-LS) VPN SAFI";
}
enum sr-te-safi {
value 73;
description "Segment Routing - Traffic Engineering
(SR-TE) SAFI";
}
enum labeled-vpn-safi {
value 128;
description "MPLS Labeled VPN SAFI";
}
enum multicast-mpls-vpn-safi {
value 129;
description "Multicast for BGP/MPLS IP VPN SAFI";
}
Liu, et al. Expires April 16, 2018 [Page 30]
Internet-Draft Routing Types YANG October 2017
enum route-target-safi {
value 132;
description "Route Target SAFI";
}
enum ipv4-flow-spec-safi {
value 133;
description "IPv4 Flow Specification SAFI";
}
enum vpnv4-flow-spec-safi {
value 134;
description "IPv4 VPN Flow Specification SAFI";
}
enum vpn-auto-discovery-safi {
value 140;
description "VPN Auto-Discovery SAFI";
}
}
description "Enumeration for BGP Subsequent Address
Family Identifier (SAFI) - RFC 4760.";
}
}
<CODE ENDS>
5. IANA Considerations
RFC Ed.: In this section, replace all occurrences of 'XXXX' with the
actual RFC number (and remove this note).
This document registers the following namespace URIs in the IETF XML
registry [RFC3688]:
--------------------------------------------------------------------
URI: urn:ietf:params:xml:ns:yang:ietf-routing-types
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
--------------------------------------------------------------------
--------------------------------------------------------------------
URI: urn:ietf:params:xml:ns:yang:iana-routing-types
Registrant Contact: IANA
XML: N/A, the requested URI is an XML namespace.
--------------------------------------------------------------------
Liu, et al. Expires April 16, 2018 [Page 31]
Internet-Draft Routing Types YANG October 2017
This document registers the following YANG modules in the YANG Module
Names registry [RFC6020]:
--------------------------------------------------------------------
name: ietf-routing-types
namespace: urn:ietf:params:xml:ns:yang:ietf-routing-types
prefix: rt-types
reference: RFC XXXX
--------------------------------------------------------------------
--------------------------------------------------------------------
name: iana-routing-types
namespace: urn:ietf:params:xml:ns:yang:iana-routing-types
prefix: iana-rt-types
reference: RFC XXXX
--------------------------------------------------------------------
5.1. IANA-Maintained iana-routing-types Module
This document defines the initial version of the IANA-maintained
iana-routing-types YANG module Section 4.
The iana-routing-types YANG module is intended to reflect the
"Address Family Numbers" registry [IANA-ADDRESS-FAMILY-REGISTRY] and
"Subsequent Address Family Identifiers (SAFI) Parameters" registry
[IANA-SAFI-REGISTRY].
IANA has added this notes to the "iana-routing-types YANG Module"
registry:
Address Families and Subsequent Address Families must not be
directly added to the iana-routing-types YANG module. They must
instead be respectively added to the "Address Family Numbers"
and "Subsequent Address Family Identifiers (SAFI) Parameters"
registries.
When an Address Family or Subsequent Address Family is respectively
added to the "Address Family Numbers" registry or the "Subsequent
Address Family Identifiers (SAFI) Parameters" registry, a new "enum"
statement must be added to the iana-routing-types YANG module. The
name of the "enum" is the same as the corresponding address family or
SAFI only it will be a valid YANG identifier in all lowercase and
with hyphens separating individual words in compound identifiers.
The following substatements to the "enum" statement should be
defined:
Liu, et al. Expires April 16, 2018 [Page 32]
Internet-Draft Routing Types YANG October 2017
"enum": Contains the YANG enum identifier for the address-family
or "bgp-safi" for subsequent address families. This may
be the same as the address-family or "bgp-safi" or it may
be a shorter version to faciliate YANG identifier usage.
"value": Contains the IANA assigned value corresponding to the
address-family or "bgp-safi" for subsequent address
families.
"status": Include only if a registration has been deprecated (use
the value "deprecated") or obsoleted (use the value
"obsolete").
"description": Replicate the description from the registry,
if any. Insert line breaks as needed so that the
line does not exceed 72 characters.
"reference": Replicate the reference from the registry, if any,
and add the title of the document.
Unassigned or reserved values are not present in these modules.
When the iana-routing-types YANG module is updated, a new "revision"
statement must be added in front of the existing revision statements.
IANA has added this new note to the "Address Family Numbers" and
"Subsequent Address Family Identifiers (SAFI) Parameters" registries:
When this registry is modified, the YANG module
iana-routing-types must be updated as defined in RFC XXXX.
6. Security Considerations
This document defines common routing type definitions (i.e., typedef
statements) using the YANG data modeling language. The definitions
themselves have no security or privacy impact on the Internet, but
the usage of these definitions in concrete YANG modules might have.
The security considerations spelled out in the YANG specification
[RFC7950] apply for this document as well.
7. Acknowledgements
The Routing Area Yang Architecture design team members included Acee
Lindem, Anees Shaikh, Christian Hopps, Dean Bogdanovic, Ebben Aries,
Lou Berger, Qin Wu, Rob Shakir, Xufeng Liu, and Yingzhen Qu.
Thanks to Martin Bjorkland, Tom Petch, Stewart Bryant, and Radek
Krejci for comments on the model and document text. Thanks to Jeff
Liu, et al. Expires April 16, 2018 [Page 33]
Internet-Draft Routing Types YANG October 2017
Haas and Robert Raszuk for suggestions for additional common routing
types.
8. References
8.1. Normative References
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004, <https://www.rfc-
editor.org/info/rfc3688>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010, <https://www.rfc-
editor.org/info/rfc6020>.
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
RFC 6991, DOI 10.17487/RFC6991, July 2013,
<https://www.rfc-editor.org/info/rfc6991>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.
[IANA-ADDRESS-FAMILY-REGISTRY]
"IANA Address Family Registry",
<https://www.iana.org/assignments/address-family-numbers/
address-family-numbers.xhtml#address-family-numbers-2>.
[IANA-SAFI-REGISTRY]
"IANA Subsequent Address Family Identities (SAFI)
Parameters Registry", <https://www.iana.org/assignments/
safi-namespace/safi-namespace.xhtml#safi-namespace-2>.
8.2. Informative References
[IEEE754] IEEE, "IEEE Standard for Floating-Point Arithmetic", IEEE
Std 754-2008, August 2008.
[I-D.ietf-bfd-yang]
Rahman, R., Zheng, L., Jethanandani, M., Networks, J., and
G. Mirsky, "YANG Data Model for Bidirectional Forwarding
Detection (BFD)", draft-ietf-bfd-yang-06 (work in
progress), June 2017.
Liu, et al. Expires April 16, 2018 [Page 34]
Internet-Draft Routing Types YANG October 2017
[I-D.ietf-idr-bgp-model]
Shaikh, A., Shakir, R., Patel, K., Hares, S., D'Souza, K.,
Bansal, D., Clemm, A., Zhdankin, A., Jethanandani, M., and
X. Liu, "BGP Model for Service Provider Networks", draft-
ietf-idr-bgp-model-02 (work in progress), July 2016.
[I-D.ietf-ospf-yang]
Yeung, D., Qu, Y., Zhang, Z., Chen, I., and A. Lindem,
"Yang Data Model for OSPF Protocol", draft-ietf-ospf-
yang-08 (work in progress), July 2017.
[I-D.ietf-pim-yang]
Liu, X., McAllister, P., Peter, A., Sivakumar, M., Liu,
Y., and f. hu, "A YANG data model for Protocol-Independent
Multicast (PIM)", draft-ietf-pim-yang-10 (work in
progress), September 2017.
[I-D.ietf-teas-yang-rsvp]
Beeram, V., Saad, T., Gandhi, R., Liu, X., Bryskin, I.,
and H. Shah, "A YANG Data Model for Resource Reservation
Protocol (RSVP)", draft-ietf-teas-yang-rsvp-07 (work in
progress), March 2017.
[I-D.ietf-teas-yang-te]
Saad, T., Gandhi, R., Liu, X., Beeram, V., Shah, H., and
I. Bryskin, "A YANG Data Model for Traffic Engineering
Tunnels and Interfaces", draft-ietf-teas-yang-te-08 (work
in progress), July 2017.
[I-D.ietf-bess-l2vpn-yang]
Shah, H., Brissette, P., Chen, I., Hussain, I., Wen, B.,
and K. Tiruveedhula, "YANG Data Model for MPLS-based
L2VPN", draft-ietf-bess-l2vpn-yang-07 (work in progress),
October 2017.
[I-D.ietf-bess-l3vpn-yang]
Jain, D., Patel, K., Brissette, P., Li, Z., Zhuang, S.,
Liu, X., Haas, J., Esale, S., and B. Wen, "Yang Data Model
for BGP/MPLS L3 VPNs", draft-ietf-bess-l3vpn-yang-01 (work
in progress), April 2017.
[I-D.ietf-mpls-base-yang]
Raza, K., Gandhi, R., Liu, X., Beeram, V., Saad, T.,
Bryskin, I., Chen, X., Jones, R., and B. Wen, "A YANG Data
Model for MPLS Base", draft-ietf-mpls-base-yang-05 (work
in progress), July 2017.
Liu, et al. Expires April 16, 2018 [Page 35]
Internet-Draft Routing Types YANG October 2017
[RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001,
<https://www.rfc-editor.org/info/rfc3032>.
[RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
<https://www.rfc-editor.org/info/rfc3209>.
[RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Functional Description",
RFC 3471, DOI 10.17487/RFC3471, January 2003,
<https://www.rfc-editor.org/info/rfc3471>.
[RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
2006, <https://www.rfc-editor.org/info/rfc4364>.
[RFC4664] Andersson, L., Ed. and E. Rosen, Ed., "Framework for Layer
2 Virtual Private Networks (L2VPNs)", RFC 4664,
DOI 10.17487/RFC4664, September 2006, <https://www.rfc-
editor.org/info/rfc4664>.
[RFC5701] Rekhter, Y., "IPv6 Address Specific BGP Extended Community
Attribute", RFC 5701, DOI 10.17487/RFC5701, November 2009,
<https://www.rfc-editor.org/info/rfc5701>.
[RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection
(BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
<https://www.rfc-editor.org/info/rfc5880>.
[RFC7274] Kompella, K., Andersson, L., and A. Farrel, "Allocating
and Retiring Special-Purpose MPLS Labels", RFC 7274,
DOI 10.17487/RFC7274, June 2014, <https://www.rfc-
editor.org/info/rfc7274>.
[RFC7432] Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A.,
Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based
Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February
2015, <https://www.rfc-editor.org/info/rfc7432>.
Authors' Addresses
Liu, et al. Expires April 16, 2018 [Page 36]
Internet-Draft Routing Types YANG October 2017
Xufeng Liu
Jabil
8281 Greensboro Drive, Suite 200
McLean VA 22102
USA
EMail: Xufeng_Liu@jabil.com
Yingzhen Qu
Futurewei Technologies, Inc.
2330 Central Expressway
Santa Clara CA 95050
USA
EMail: yingzhen.qu@huawei.com
Acee Lindem
Cisco Systems
301 Midenhall Way
Cary, NC 27513
USA
EMail: acee@cisco.com
Christian Hopps
Deutsche Telekom
EMail: chopps@chopps.org
Lou Berger
LabN Consulting, L.L.C.
EMail: lberger@labn.net
Liu, et al. Expires April 16, 2018 [Page 37]