Internet DRAFT - draft-ietf-tcpm-3517bis

draft-ietf-tcpm-3517bis




TCPM Working Group                                            E. Blanton
INTERNET-DRAFT                                         Purdue University
draft-ietf-tcpm-3517bis-02.txt                                 M. Allman
Obsoletes: 3517                                                     ICSI
Intended status: Standards Track                                 L. Wang
Expires: September 2012                                 Juniper Networks
                                                             I. Jarvinen
                                                                 M. Kojo
                                                  University of Helsinki
                                                              Y. Nishida
                                                            WIDE Project
                                                          March 26, 2012


         A Conservative Selective Acknowledgment (SACK)-based
                    Loss Recovery Algorithm for TCP

Status of this Memo

    This Internet-Draft is submitted to IETF in full conformance with
    the provisions of BCP 78 and BCP 79.

    Internet-Drafts are working documents of the Internet Engineering
    Task Force (IETF), its areas, and its working groups.  Note that
    other groups may also distribute working documents as Internet-
    Drafts.

    Internet-Drafts are draft documents valid for a maximum of six
    months and may be updated, replaced, or obsoleted by other documents
    at any time.  It is inappropriate to use Internet-Drafts as
    reference material or to cite them other than as "work in progress."

    The list of current Internet-Drafts can be accessed at
    http://www.ietf.org/ietf/1id-abstracts.txt.

    The list of Internet-Draft Shadow Directories can be accessed at
    http://www.ietf.org/shadow.html.

    This Internet-Draft will expire on September 23, 2012.

Copyright Notice

    Copyright (c) 2012 IETF Trust and the persons identified as the
    document authors.  All rights reserved.

    This document is subject to BCP 78 and the IETF Trust's Legal
    Provisions Relating to IETF Documents
    (http://trustee.ietf.org/license-info) in effect on the date of
    publication of this document.  Please review these documents
    carefully, as they describe your rights and restrictions with
    respect to this document.  Code Components extracted from this
    document must include Simplified BSD License text as described in
    Section 4.e of the Trust Legal Provisions and are provided without
    warranty as described in the Simplified BSD License.
    

Expires: September 23, 2012                                     [Page 1]

draft-ietf-tcpm-3517bis-02.txt                                March 2012



Abstract

   This document presents a conservative loss recovery algorithm for TCP
   that is based on the use of the selective acknowledgment (SACK) TCP
   option.  The algorithm presented in this document conforms to the
   spirit of the current congestion control specification (RFC 5681),
   but allows TCP senders to recover more effectively when multiple
   segments are lost from a single flight of data.

1   Introduction

   This document presents a conservative loss recovery algorithm for TCP
   that is based on the use of the selective acknowledgment (SACK) TCP
   option.  While the TCP SACK [RFC2018] is being steadily deployed in
   the Internet [All00], there is evidence that hosts are not using the
   SACK information when making retransmission and congestion control
   decisions [PF01].  The goal of this document is to outline one
   straightforward method for TCP implementations to use SACK
   information to increase performance.

   [RFC5681] allows advanced loss recovery algorithms to be used by TCP
   [RFC793] provided that they follow the spirit of TCP's congestion
   control algorithms [RFC5681, RFC2914].  [RFC3782] outlines one such
   advanced recovery algorithm called NewReno.  This document outlines a
   loss recovery algorithm that uses the SACK [RFC2018] TCP option to
   enhance TCP's loss recovery.  The algorithm outlined in this
   document, heavily based on the algorithm detailed in [FF96], is a
   conservative replacement of the fast recovery algorithm [Jac90,
   RFC5681].  The algorithm specified in this document is a
   straightforward SACK-based loss recovery strategy that follows the
   guidelines set in [RFC5681] and can safely be used in TCP
   implementations.  Alternate SACK-based loss recovery methods can be
   used in TCP as implementers see fit (as long as the alternate
   algorithms follow the guidelines provided in [RFC5681]).  Please
   note, however, that the SACK-based decisions in this document (such
   as what segments are to be sent at what time) are largely decoupled
   from the congestion control algorithms, and as such can be treated as
   separate issues if so desired.

   This document represents a revision of [RFC3517] to address several
   situations that are not handled explicitly in that document.  A
   summary of the changes between this document and [RFC3517] can be
   found in Section 9.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in BCP 14, RFC 2119
   [RFC2119].

2   Definitions

   The reader is expected to be familiar with the definitions given in

Expires: September 23, 2012                                     [Page 2]

draft-ietf-tcpm-3517bis-02.txt                                March 2012

   [RFC5681].

   The reader is assumed to be familiar with selective acknowledgments
   as specified in [RFC2018].

   For the purposes of explaining the SACK-based loss recovery algorithm
   we define six variables that a TCP sender stores:

      "HighACK" is the sequence number of the highest byte of data that
      has been cumulatively ACKed at a given point.

      "HighData" is the highest sequence number transmitted at a given
      point.

      "HighRxt" is the highest sequence number which has been
      retransmitted during the current loss recovery phase.

      "RescueRxt" is the highest sequence number which has been
      retransmitted optimistically to prevent stalling of the ACK clock
      when there is loss at the end of the window and no new data is
      available for transmission.

      "Pipe" is a sender's estimate of the number of bytes outstanding
      in the network.  This is used during recovery for limiting the
      sender's sending rate.  The pipe variable allows TCP to use a
      fundamentally different congestion control than specified in
      [RFC5681].  The algorithm is often referred to as the "pipe
      algorithm".

      "DupAcks" is the number of duplicate acknowledgments received
      since the last cumulative acknowledgment.

   For the purposes of this specification we define a "duplicate
   acknowledgment" as a segment that arrives carrying a SACK block that
   identifies previously unacknowledged and un-SACKed octets between
   HighACK and HighData.  Note that an ACK which carries new
   SACK data is counted as a duplicate acknowledgment under this
   definition even if it carries new data, changes the advertised
   window, or moves the cumulative acknowledgment point, which is
   different from the definition of duplicate acknowledgment
   in [RFC5681].

   We define a variable "DupThresh" that holds the number of duplicate
   acknowledgments required to trigger a retransmission.  Per [RFC5681]
   this threshold is defined to be 3 duplicate acknowledgments.
   However, implementers should consult any updates to [RFC5681] to
   determine the current value for DupThresh (or method for determining
   its value).

   Finally, a range of sequence numbers [A,B] is said to "cover"
   sequence number S if A <= S <= B.

3   Keeping Track of SACK Information


Expires: September 23, 2012                                     [Page 3]

draft-ietf-tcpm-3517bis-02.txt                                March 2012

   For a TCP sender to implement the algorithm defined in the next
   section it must keep a data structure to store incoming selective
   acknowledgment information on a per connection basis.  Such a data
   structure is commonly called the "scoreboard".  The specifics of the
   scoreboard data structure are out of scope for this document (as long
   as the implementation can perform all functions required by this
   specification).

   Note that this document refers to keeping account of (marking)
   individual octets of data transferred across a TCP connection.  A
   real-world implementation of the scoreboard would likely prefer to
   manage this data as sequence number ranges.  The algorithms presented
   here allow this, but require the ability to mark arbitrary sequence
   number ranges as having been selectively acknowledged.

   Finally, note that the algorithm in this document assumes a
   sender that is not keeping track of segment boundaries after
   transmitting a segment.  It is possible that a sender that did
   keep this extra state may be able to use a more refined and
   precise algorithm than the one presented herein, however, we
   leave this as future work.

4   Processing and Acting Upon SACK Information

   For the purposes of the algorithm defined in this document the
   scoreboard SHOULD implement the following functions:

   Update ():

      Given the information provided in an ACK, each octet that is
      cumulatively ACKed or SACKed should be marked accordingly in the
      scoreboard data structure, and the total number of octets SACKed
      should be recorded.

      Note: SACK information is advisory and therefore SACKed data MUST
      NOT be removed from TCP's retransmission buffer until the data is
      cumulatively acknowledged [RFC2018].

   IsLost (SeqNum):

      This routine returns whether the given sequence number is
      considered to be lost.  The routine returns true when either
      DupThresh discontiguous SACKed sequences have arrived above
      'SeqNum' or more than (DupThresh - 1) * SMSS bytes with sequence
      numbers greater than 'SeqNum' have been SACKed.  Otherwise, the
      routine returns false.

   SetPipe ():

      This routine traverses the sequence space from HighACK to HighData
      and MUST set the "pipe" variable to an estimate of the number of
      octets that are currently in transit between the TCP sender and
      the TCP receiver.  After initializing pipe to zero the following
      steps are taken for each octet 'S1' in the sequence space between

Expires: September 23, 2012                                     [Page 4]

draft-ietf-tcpm-3517bis-02.txt                                March 2012

      HighACK and HighData that has not been SACKed:

      (a) If IsLost (S1) returns false:

         Pipe is incremented by 1 octet.

         The effect of this condition is that pipe is incremented for
         packets that have not been SACKed and have not been determined
         to have been lost (i.e., those segments that are still assumed
         to be in the network).

      (b) If S1 <= HighRxt:

         Pipe is incremented by 1 octet.

         The effect of this condition is that pipe is incremented for
         the retransmission of the octet.

      Note that octets retransmitted without being considered lost are
      counted twice by the above mechanism.

   NextSeg ():

      This routine uses the scoreboard data structure maintained by the
      Update() function to determine what to transmit based on the SACK
      information that has arrived from the data receiver (and hence
      been marked in the scoreboard).  NextSeg () MUST return the
      sequence number range of the next segment that is to be
      transmitted, per the following rules:

      (1) If there exists a smallest unSACKed sequence number 'S2' that
          meets the following three criteria for determining loss, the
          sequence range of one segment of up to SMSS octets starting
          with S2 MUST be returned.

          (1.a) S2 is greater than HighRxt.

          (1.b) S2 is less than the highest octet covered by any
                received SACK.

          (1.c) IsLost (S2) returns true.

      (2) If no sequence number 'S2' per rule (1) exists but there
          exists available unsent data and the receiver's advertised
          window allows, the sequence range of one segment of up to SMSS
          octets of previously unsent data starting with sequence number
          HighData+1 MUST be returned.

      (3) If the conditions for rules (1) and (2) fail, but there exists
          an unSACKed sequence number 'S3' that meets the criteria for
          detecting loss given in steps (1.a) and (1.b) above
          (specifically excluding step (1.c)) then one segment of up to
          SMSS octets starting with S3 SHOULD be returned.


Expires: September 23, 2012                                     [Page 5]

draft-ietf-tcpm-3517bis-02.txt                                March 2012

      (4) If the conditions for (1), (2), and (3) fail, but there
          exists outstanding unSACKed data, we provide the
          opportunity for a single "rescue" retransmission per entry
          into loss recovery.  If HighACK is greater than RescueRxt
          (or RescueRxt is undefined), then one segment of up to
          SMSS octets which MUST include the highest outstanding
          unSACKed sequence number SHOULD be returned, and RescueRxt
          set to RecoveryPoint.  HighRxt MUST NOT be updated.

          Note that rules (3) and (4) are a sort of retransmission "last
          resort".  They allow for retransmission of sequence numbers
          even when the sender has less certainty a segment has been
          lost than as with rule (1).  Retransmitting segments via rule
          (3) and (4) will help sustain TCP's ACK clock and therefore
          can potentially help avoid retransmission timeouts.  However,
          in sending these segments the sender has two copies of the
          same data considered to be in the network (and also in the
          Pipe estimate, in the case of (3)).  When an ACK or SACK
          arrives covering this retransmitted segment, the sender cannot
          be sure exactly how much data left the network (one of the two
          transmissions of the packet or both transmissions of the
          packet).  Therefore the sender may underestimate Pipe by
          considering both segments to have left the network when it is
          possible that only one of the two has.

      (5) If the conditions for each of (1), (2), (3), and (4) are not
          met, then NextSeg () MUST indicate failure, and no segment is
          returned.

   Note: The SACK-based loss recovery algorithm outlined in this
   document requires more computational resources than previous TCP loss
   recovery strategies.  However, we believe the scoreboard data
   structure can be implemented in a reasonably efficient manner (both
   in terms of computation complexity and memory usage) in most TCP
   implementations.

5   Algorithm Details

   Upon the receipt of any ACK containing SACK information, the
   scoreboard MUST be updated via the Update () routine.

   If the incoming ACK is a cumulative acknowledgment, the TCP MUST
   reset DupAcks to zero.
   
   If the incoming ACK is a duplicate acknowledgment per the definition
   in Section 2 (regardless of its status as a cumulative
   acknowledgment), and the TCP is not currently in loss recovery, the
   TCP MUST increase DupAcks by one and take the following steps:
   
   (1) If DupAcks >= DupThresh, go to step (4).
   
       Note: This check covers the case when a TCP receives SACK
       information for multiple segments smaller than SMSS, which can
       potentially prevent IsLost() (next step) from declaring a segment

Expires: September 23, 2012                                     [Page 6]

draft-ietf-tcpm-3517bis-02.txt                                March 2012

       as lost.

   (2) If DupAcks < DupThresh but IsLost (HighACK + 1) returns
       true---indicating at least three segments have arrived above
       the current cumulative acknowledgment point, which is taken
       to indicate loss---go to step (4).
   
   (3) The TCP MAY transmit previously unsent data segments as per
       Limited Transmit [RFC5681], except that the number of octets
       which may be sent is governed by Pipe and cwnd as follows:
   
       (3.1) Set HighRxt to HighACK.
   
       (3.2) Run SetPipe ().
   
       (3.3) If (cwnd - pipe) >= 1 SMSS, there exists previously
             unsent data, and the receiver's advertised window
             allows, transmit up to 1 SMSS of data starting with the
             octet HighData+1 and update HighData to reflect this
             transmission, then return to (3.2).
   
       (3.4) Terminate processing of this ACK.
   
   (4) Invoke Fast Retransmit and enter loss recovery as follows:

       (4.1) RecoveryPoint = HighData

             When the TCP sender receives a cumulative ACK for this
             data octet the loss recovery phase is terminated.

       (4.2) ssthresh = cwnd = (FlightSize / 2)

             The congestion window (cwnd) and slow start threshold
             (ssthresh) are reduced to half of FlightSize per
             [RFC5681].  Additionally, note that [RFC5681] requires
             any segments sent as part of the Limited Transmit
             mechanism not be counted in FlightSize for the purpose
             of the above equation.

       (4.3) Retransmit the first data segment presumed dropped -- the
             segment starting with sequence number HighACK + 1.  To
             prevent repeated retransmission of the same data or a
             premature rescue retransmission, set both HighRxt and
             RescueRxt to the highest sequence number in the
             retransmitted segment.

       (4.4) Run SetPipe ()

             Set a "pipe" variable to the number of outstanding
             octets currently "in the pipe"; this is the data which
             has been sent by the TCP sender but for which no
             cumulative or selective acknowledgment has been
             received and the data has not been determined to have
             been dropped in the network.  It is assumed that the

Expires: September 23, 2012                                     [Page 7]

draft-ietf-tcpm-3517bis-02.txt                                March 2012

             data is still traversing the network path.
 
       (4.5) In order to take advantage of potential additional
             available cwnd, proceed to step (C) below.

   Once a TCP is in the loss recovery phase the following procedure MUST
   be used for each arriving ACK:

   (A) An incoming cumulative ACK for a sequence number greater than
       RecoveryPoint signals the end of loss recovery and the loss
       recovery phase MUST be terminated.  Any information contained in
       the scoreboard for sequence numbers greater than the new value of
       HighACK SHOULD NOT be cleared when leaving the loss recovery
       phase.

   (B) Upon receipt of an ACK that does not cover RecoveryPoint the
       following actions MUST be taken:

       (B.1) Use Update () to record the new SACK information conveyed
       by the incoming ACK.

       (B.2) Use SetPipe () to re-calculate the number of octets still
       in the network.

   (C) If cwnd - pipe >= 1 SMSS the sender SHOULD transmit one or more
       segments as follows:

       (C.1) The scoreboard MUST be queried via NextSeg () for the
       sequence number range of the next segment to transmit (if any),
       and the given segment sent.  If NextSeg () returns failure (no
       data to send) return without sending anything (i.e., terminate
       steps C.1 -- C.5).

       (C.2) If any of the data octets sent in (C.1) are below HighData,
       HighRxt MUST be set to the highest sequence number of the
       retransmitted segment unless NextSeg () rule (4) was invoked for
       this retransmission.

       (C.3) If any of the data octets sent in (C.1) are above HighData,
       HighData must be updated to reflect the transmission of
       previously unsent data.

       (C.4) The estimate of the amount of data outstanding in the
       network must be updated by incrementing pipe by the number of
       octets transmitted in (C.1).

       (C.5) If cwnd - pipe >= 1 SMSS, return to (C.1)

   Note that steps (A) and (C) can potentially send a burst of
   back-to-back segments into the network if the incoming cumulative
   acknowledgment is for more than SMSS octets of data, or if incoming
   SACK blocks indicate that more than SMSS octets of data have been
   lost in the second half of the window.


Expires: September 23, 2012                                     [Page 8]

draft-ietf-tcpm-3517bis-02.txt                                March 2012

5.1 Retransmission Timeouts

   In order to avoid memory deadlocks, the TCP receiver is allowed
   to discard data that has already been selectively acknowledged.
   As a result, [RFC2018] suggests that a TCP sender SHOULD expunge
   the SACK information gathered from a receiver upon a
   retransmission timeout "since the timeout might indicate that the
   data receiver has reneged."  Additionally, a TCP sender MUST
   "ignore prior SACK information in determining which data to
   retransmit."  However, since the publication of [RFC2018] this
   has come to be viewed by some as too strong.  It has been
   suggested that, as long as robust tests for reneging are present,
   an implementation can retain and use SACK information across a
   timeout event [Errata1610].  While this document does not change
   the specification in [RFC2018], we note that implementers should
   consult any updates to [RFC2018] on this subject.  Further, a
   SACK TCP sender SHOULD utilize all SACK information made
   available during the loss recovery following an RTO.

   If an RTO occurs during loss recovery as specified in this document,
   RecoveryPoint MUST be set to HighData.  Further, the new value of
   RecoveryPoint MUST be preserved and the loss recovery algorithm
   outlined in this document MUST be terminated.  In addition, a new
   recovery phase (as described in section 5) MUST NOT be initiated
   until HighACK is greater than or equal to the new value of
   RecoveryPoint.

   As described in Sections 4 and 5, Update () SHOULD continue to be
   used appropriately upon receipt of ACKs.  This will allow the
   recovery period after an RTO to benefit from all available
   information provided by the receiver, even if SACK information
   was expunged due to the RTO.

   If there are segments missing from the receiver's buffer
   following processing of the retransmitted segment, the
   corresponding ACK will contain SACK information.  In this case, a
   TCP sender SHOULD use this SACK information when determining what
   data should be sent in each segment following an RTO.  The exact
   algorithm for this selection is not specified in this document
   (specifically NextSeg () is inappropriate during loss recovery
   after an RTO).  A relatively straightforward approach to "filling
   in" the sequence space reported as missing should be a reasonable
   approach.

6   Managing the RTO Timer

   The standard TCP RTO estimator is defined in [RFC6298].  Due to the
   fact that the SACK algorithm in this document can have an impact on
   the behavior of the estimator, implementers may wish to consider how
   the timer is managed.  [RFC6298] calls for the RTO timer to be
   re-armed each time an ACK arrives that advances the cumulative ACK
   point.  Because the algorithm presented in this document can keep the
   ACK clock going through a fairly significant loss event,
   (comparatively longer than the algorithm described in [RFC5681]), on

Expires: September 23, 2012                                     [Page 9]

draft-ietf-tcpm-3517bis-02.txt                                March 2012

   some networks the loss event could last longer than the RTO.  In this
   case the RTO timer would expire prematurely and a segment that need
   not be retransmitted would be resent.

   Therefore we give implementers the latitude to use the standard
   [RFC6298] style RTO management or, optionally, a more careful variant
   that re-arms the RTO timer on each retransmission that is sent during
   recovery MAY be used.  This provides a more conservative timer than
   specified in [RFC6298], and so may not always be an attractive
   alternative.  However, in some cases it may prevent needless
   retransmissions, go-back-N transmission and further reduction of the
   congestion window.

7   Research

   The algorithm specified in this document is analyzed in [FF96], which
   shows that the above algorithm is effective in reducing transfer time
   over standard TCP Reno [RFC5681] when multiple segments are dropped
   from a window of data (especially as the number of drops increases).
   [AHKO97] shows that the algorithm defined in this document can
   greatly improve throughput in connections traversing satellite
   channels.

8   Security Considerations

   The algorithm presented in this paper shares security considerations
   with [RFC5681].  A key difference is that an algorithm based on SACKs
   is more robust against attackers forging duplicate ACKs to force the
   TCP sender to reduce cwnd.  With SACKs, TCP senders have an
   additional check on whether or not a particular ACK is legitimate.
   While not fool-proof, SACK does provide some amount of protection in
   this area.

   Similarly, [CPNI309] sketches a variant of a blind attack [RFC5961]
   whereby an attacker can spoof out-of-window data to a TCP endpoint,
   causing it to respond to the legitimate peer with a duplicate
   cumulative ACK, per [RFC793].  Adding a SACK-based requirement to
   trigger loss recovery effectively mitigates this attack, as the
   duplicate ACKs caused by out-of-window segments will not contain SACK
   information indicating reception of previously un-SACKED in-window
   data.

9   Changes Relative to RFC 3517

   The state variable "DupAcks" has been added to the list of variables
   maintained by this algorithm, and its usage specified.

   The function IsLost () has been modified to require that more than
   (DupThresh - 1) * SMSS octets have been SACKed above a given sequence
   number as indication that it is lost, changed from at least
   (DupThresh * SMSS).  This retains the requirement that at least three
   segments following the sequence number in question have been SACKed,
   while improving detection in the event that the sender has
   outstanding segments which are smaller than SMSS.

Expires: September 23, 2012                                    [Page 10]

draft-ietf-tcpm-3517bis-02.txt                                March 2012


   The definition of a "duplicate acknowledgment" has been modified to
   utilize the SACK information in detecting loss.  Duplicate cumulative
   acknowledgments can be caused by either loss or reordering in the
   network.  To disambiguate loss and reordering TCP's fast retransmit
   algorithm [RFC5681] waits until three duplicate ACKs arrive to
   trigger loss recovery.  This notion was then the basis for the
   algorithm specified in [RFC3517].  However, with SACK information
   there is no need to rely blindly on the cumulative acknowledgment
   field.  We can leverage the additional information present in the
   SACK blocks to understand that three segments have arrived at the
   receiver which lie above a gap in the sequence space, and can use
   that to trigger loss recovery.  This notion was used in [RFC3517]
   during loss recovery, and the change in this document is that the
   notion is also used to enter a loss recovery phase.

   The state variable "RescueRxt" has been added to the list of
   variables maintained by the algorithm, and its usage specified.  This
   variable is used to allow for one extra retransmission per entry into
   loss recovery, in order to keep the ACK clock going under certain
   circumstances involving loss at the end of the window.  This
   mechanism allows for no more than one segment of no larger than 1
   SMSS to be optimistically retransmitted per loss recovery.

   Rule (3) of NextSeg() has been changed from MAY to SHOULD, to
   appropriately reflect the opinion of the authors and working group
   that it should be left in, rather than out, if an implementor does
   not have a compelling reason to do otherwise.

10  IANA Considerations

   This document has no actions for IANA.

Acknowledgments

   The authors wish to thank Sally Floyd for encouraging [RFC3517]
   and commenting on early drafts.  The algorithm described in this
   document is loosely based on an algorithm outlined by Kevin Fall
   and Sally Floyd in [FF96], although the authors of this document
   assume responsibility for any mistakes in the above text.  

   [RFC3517] was co-authored by Kevin Fall, who provided crucial input
   to that document and hence this follow-on work.

   Murali Bashyam, Ken Calvert, Tom Henderson, Reiner Ludwig,
   Jamshid Mahdavi, Matt Mathis, Shawn Ostermann, Vern Paxson and
   Venkat Venkatsubra provided valuable feedback on earlier versions
   of this document.  

   We thank Matt Mathis and Jamshid Mahdavi for implementing the
   scoreboard in ns and hence guiding our thinking in keeping track
   of SACK state.

   The first author would like to thank Ohio University and the Ohio

Expires: September 23, 2012                                    [Page 11]

draft-ietf-tcpm-3517bis-02.txt                                March 2012

   University Internetworking Research Group for supporting the bulk of
   his work on RFC 3517, from which this document is derived.

Normative References

   [RFC793]  Postel, J., "Transmission Control Protocol", STD 7, RFC
             793, September 1981.

   [RFC2018] Mathis, M., Mahdavi, J., Floyd, S. and A. Romanow, "TCP
             Selective Acknowledgment Options", RFC 2018, October 1996.

   [RFC2026] Bradner, S., "The Internet Standards Process -- Revision
             3", BCP 9, RFC 2026, October 1996.

   [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC5681] Allman, M., Paxson, V. and E. Blanton, "TCP Congestion
             Control", RFC 5681, September 2009.

Informative References

   [AHKO97]  Mark Allman, Chris Hayes, Hans Kruse, Shawn Ostermann, "TCP
             Performance Over Satellite Links", Proceedings of the Fifth
             International Conference on Telecommunications Systems,
             Nashville, TN, March, 1997.

   [All00]   Mark Allman, "A Web Server's View of the Transport Layer",
             ACM Computer Communication Review, 30(5), October 2000.

   [CPNI309] Fernando Gont, "Security Assessment of the Transmission
             Control Protocol (TCP)", CPNI Technical Note 3/2009,
             http://www.cpni.gov.uk/Docs/tn-03-09-security-assessment-TCP.pdf,
             February 2009.

   [Errata1610] Matt Mathis, "RFC Errata Report 1610 for RFC 2018",
             http://www.rfc-editor.org/errata_search.php?eid=1610,
             Verified 2008-12-09.

   [FF96]    Kevin Fall and Sally Floyd, "Simulation-based Comparisons
             of Tahoe, Reno and SACK TCP", Computer Communication
             Review, July 1996.

   [Jac90]   Van Jacobson, "Modified TCP Congestion Avoidance
             Algorithm", Technical Report, LBL, April 1990.

   [PF01]    Jitendra Padhye, Sally Floyd "Identifying the TCP Behavior
             of Web Servers", ACM SIGCOMM, August 2001.

   [RFC3782] Floyd, S., Henderson, T., and A. Gurtov, "The NewReno
             Modification to TCP's Fast Recovery Algorithm", RFC 3782,
             April 2004.

   [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41, RFC

Expires: September 23, 2012                                    [Page 12]

draft-ietf-tcpm-3517bis-02.txt                                March 2012

             2914, September 2000.

   [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent, "Computing
             TCP's Retransmission Timer", RFC 6298, June 2011.

   [RFC3517] Blanton, E., Allman, M., Fall, K., and L. Wang, "A
             Conservative Selective Acknowledgment (SACK)-based Loss
             Recovery Algorithm for TCP", RFC 3517, April 2003.

   [RFC5961] Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP's
             Robustness to Blind In-Window Attacks", RFC 5961, August
             2010.
             

Authors' Addresses

   Ethan Blanton
   Purdue University Computer Sciences
   305 N. University St.
   West Lafayette, IN  47907

   EMail: elb@psg.com


   Mark Allman
   International Computer Science Institute
   1947 Center St.  Suite 600
   Berkeley, CA  94704

   Phone: 440-235-1792
   EMail: mallman@icir.org
   http://www.icir.org/mallman


   Lili Wang
   Juniper Networks
   10 Technology Park Drive
   Westford, MA  01886

   EMail: liliw@juniper.net


   Ilpo Jarvinen
   University of Helsinki
   P.O. Box 68
   FI-00014 UNIVERSITY OF HELSINKI
   Finland

   Email: ilpo.jarvinen@helsinki.fi


   Markku Kojo
   University of Helsinki
   P.O. Box 68

Expires: September 23, 2012                                    [Page 13]

draft-ietf-tcpm-3517bis-02.txt                                March 2012

   FI-00014 UNIVERSITY OF HELSINKI
   Finland

   Email: kojo@cs.helsinki.fi


   Yoshifumi Nishida
   WIDE Project
   Endo 5322
   Fujisawa, Kanagawa  252-8520
   Japan

   Email: nishida@wide.ad.jp










































Expires: September 23, 2012                                    [Page 14]