Internet DRAFT - draft-irtf-cfrg-randomness-improvements
draft-irtf-cfrg-randomness-improvements
Internet Research Task Force (IRTF) C. Cremers
Internet-Draft CISPA Helmholtz Center for Information Security
Intended status: Informational L. Garratt
Expires: 20 February 2021 Cisco Meraki
S. Smyshlyaev
CryptoPro
N. Sullivan
C. Wood
Cloudflare
19 August 2020
Randomness Improvements for Security Protocols
draft-irtf-cfrg-randomness-improvements-14
Abstract
Randomness is a crucial ingredient for Transport Layer Security (TLS)
and related security protocols. Weak or predictable
"cryptographically-strong" pseudorandom number generators (CSPRNGs)
can be abused or exploited for malicious purposes. An initial
entropy source that seeds a CSPRNG might be weak or broken as well,
which can also lead to critical and systemic security problems. This
document describes a way for security protocol implementations to
augment their CSPRNGs using long-term private keys. This improves
randomness from broken or otherwise subverted CSPRNGs.
This document is a product of the Crypto Forum Research Group (CFRG)
in the IRTF.
Note to Readers
Source for this draft and an issue tracker can be found at
https://github.com/chris-wood/draft-irtf-cfrg-randomness-improvements
(https://github.com/chris-wood/draft-irtf-cfrg-randomness-
improvements).
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Cremers, et al. Expires 20 February 2021 [Page 1]
Internet-Draft Randomness Improvements August 2020
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 20 February 2021.
Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Simplified BSD License text
as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Conventions Used in This Document . . . . . . . . . . . . . . 4
3. Randomness Wrapper . . . . . . . . . . . . . . . . . . . . . 4
4. Tag Generation . . . . . . . . . . . . . . . . . . . . . . . 5
5. Application to TLS . . . . . . . . . . . . . . . . . . . . . 6
6. Implementation Guidance . . . . . . . . . . . . . . . . . . . 6
7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 6
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 6
9. Security Considerations . . . . . . . . . . . . . . . . . . . 6
10. Comparison to RFC 6979 . . . . . . . . . . . . . . . . . . . 7
11. References . . . . . . . . . . . . . . . . . . . . . . . . . 8
11.1. Normative References . . . . . . . . . . . . . . . . . . 8
11.2. Informative References . . . . . . . . . . . . . . . . . 8
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 9
1. Introduction
Secure and properly implemented random number generators, or
"cryptographically-strong" pseudorandom number generators (CSPRNGs),
should produce output that is indistinguishable from a random string
of the same length. CSPRNGs are critical building blocks for TLS and
related transport security protocols. TLS in particular uses CSPRNGs
to generate several values, such as ephemeral key shares and
ClientHello and ServerHello random values. CSPRNG failures such as
the Debian bug described in [DebianBug] can lead to insecure TLS
Cremers, et al. Expires 20 February 2021 [Page 2]
Internet-Draft Randomness Improvements August 2020
connections. CSPRNGs may also be intentionally weakened to cause
harm [DualEC]. Initial entropy sources can also be weak or broken,
and that would lead to insecurity of all CSPRNG instances seeded with
them. In such cases where CSPRNGs are poorly implemented or
insecure, an adversary Adv may be able to distinguish its output from
a random string or predict its output and recover secret key material
used to protect the connection.
This document proposes an improvement to randomness generation in
security protocols inspired by the "NAXOS trick" [NAXOS].
Specifically, instead of using raw randomness where needed, e.g., in
generating ephemeral key shares, a function of a party's long-term
private key is mixed into the entropy pool. In the NAXOS key
exchange protocol, raw random value x is replaced by H(x, sk), where
sk is the sender's private key. Unfortunately, as private keys are
often isolated in Hardware Security Modules (HSMs), direct access to
compute H(x, sk) is impossible. Moreover, some HSM APIs may only
offer the option to sign messages using a private key, yet offer no
other operations involving that key. An alternate yet functionally
equivalent construction is needed.
The approach described herein replaces the NAXOS hash with a keyed
hash, or pseudorandom function (PRF), where the key is derived from a
raw random value and a private key signature. Implementations SHOULD
apply this technique when indirect access to a private key is
available and CSPRNG randomness guarantees are dubious, or to provide
stronger guarantees about possible future issues with the randomness.
Roughly, the security properties provided by the proposed
construction are as follows:
1. If the CSPRNG works fine, that is, in a certain adversary model
the CSPRNG output is indistinguishable from a truly random
sequence, then the output of the proposed construction is also
indistinguishable from a truly random sequence in that adversary
model.
2. Adv with full control of a (potentially broken) CSPRNG and
ability to observe all outputs of the proposed construction does
not obtain any non-negligible advantage in leaking the private
key (in the absence of side channel attacks).
3. If the CSPRNG is broken or controlled by Adv, the output of the
proposed construction remains indistinguishable from random
provided the private key remains unknown to Adv.
This document represents the consensus of the Crypto Forum Research
Group (CFRG).
Cremers, et al. Expires 20 February 2021 [Page 3]
Internet-Draft Randomness Improvements August 2020
2. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119], [RFC8174] when, and only when, they appear in all
capitals, as shown here.
3. Randomness Wrapper
The output of a properly instantiated CSPRNG should be
indistinguishable from a random string of the same length. However,
as previously discussed, this is not always true. To mitigate this
problem, we propose an approach for wrapping the CSPRNG output with a
construction that mixes secret data into a value that may be lacking
randomness.
Let G(n) be an algorithm that generates n random bytes, i.e., the
output of a CSPRNG. Define an augmented CSPRNG G' as follows. Let
Sig(sk, m) be a function that computes a signature of message m given
private key sk. Let H be a cryptographic hash function that produces
output of length M. Let Extract(salt, IKM) be a randomness
extraction function, e.g., HKDF-Extract [RFC5869], which accepts a
salt and input keying material (IKM) parameter and produces a
pseudorandom key of L bytes suitable for cryptographic use. It must
be a secure PRF (for salt as a key of length M) and preserve
uniformness of IKM (for details see [SecAnalysis]). L SHOULD be a
fixed length. Let Expand(k, info, n) be a variable-length output
PRF, e.g., HKDF-Expand [RFC5869], that takes as input a pseudorandom
key k of L bytes, info string, and output length n, and produces
output of n bytes. Finally, let tag1 be a fixed, context-dependent
string, and let tag2 be a dynamically changing string (e.g., a
counter) of L' bytes. We require that L >= n - L' for each value of
tag2.
The construction works as follows. Instead of using G(n) when
randomness is needed, use G'(n), where
G'(n) = Expand(Extract(H(Sig(sk, tag1)), G(L)), tag2, n)
Functionally, this expands n random bytes from a key derived from the
CSPRNG output and signature over a fixed string (tag1). See
Section 4 for details about how "tag1" and "tag2" should be generated
and used per invocation of the randomness wrapper. Expand()
generates a string that is computationally indistinguishable from a
truly random string of n bytes. Thus, the security of this
construction depends upon the secrecy of H(Sig(sk, tag1)) and G(L).
Cremers, et al. Expires 20 February 2021 [Page 4]
Internet-Draft Randomness Improvements August 2020
If the signature is leaked, then security of G'(n) reduces to the
scenario wherein randomness is expanded directly from G(L).
If a private key sk is stored and used inside an HSM, then the
signature calculation is implemented inside it, while all other
operations (including calculation of a hash function, Extract and
Expand functions) can be implemented either inside or outside the
HSM.
Sig(sk, tag1) need only be computed once for the lifetime of the
randomness wrapper, and MUST NOT be used or exposed beyond its role
in this computation. Additional recommendations for tag1 are given
in the following section.
Sig MUST be a deterministic signature function, e.g., deterministic
ECDSA [RFC6979], or use an independent (and completely reliable)
entropy source, e.g., if Sig is implemented in an HSM with its own
internal trusted entropy source for signature generation.
Because Sig(sk, tag1) can be cached, the relative cost of using G'(n)
instead of G(n) tends to be negligible with respect to cryptographic
operations in protocols such as TLS (the relatively inexpensive
computational cost of HKDF-Extract and HKDF-Expand dominates when
comparing G' to G). A description of the performance experiments and
their results can be found in the appendix of [SecAnalysis].
Moreover, the values of G'(n) may be precomputed and pooled. This is
possible since the construction depends solely upon the CSPRNG output
and private key.
4. Tag Generation
Both tags MUST be generated such that they never collide with another
contender or owner of the private key. This can happen if, for
example, one HSM with a private key is used from several servers, or
if virtual machines are cloned.
The RECOMMENDED tag construction procedure is as follows:
* tag1: Constant string bound to a specific device and protocol in
use. This allows caching of Sig(sk, tag1). Device specific
information may include, for example, a MAC address. To provide
security in the cases of usage of CSPRNGs in virtual environments,
it is RECOMMENDED to incorporate all available information
specific to the process that would ensure the uniqueness of each
tag1 value among different instances of virtual machines
(including ones that were cloned or recovered from snapshots).
This is needed to address the problem of CSPRNG state cloning (see
Cremers, et al. Expires 20 February 2021 [Page 5]
Internet-Draft Randomness Improvements August 2020
[RY2010]). See Section 5 for example protocol information that
can be used in the context of TLS 1.3. If sk could be used for
other purposes, then selecting a value for tag1 that is different
than the form allowed by those other uses ensures that the
signature is not exposed.
* tag2: A nonce. That is, a value that is unique for each use of
the same combination of G(L), tag1, and sk values. The tag2 value
can be implemented using a counter, or a timer, provided that the
timer is guaranteed to be different for each invocation of G'(n).
5. Application to TLS
The PRF randomness wrapper can be applied to any protocol wherein a
party has a long-term private key and also generates randomness.
This is true of most TLS servers. Thus, to apply this construction
to TLS, one simply replaces the "private" CSPRNG G(n), i.e., the
CSPRNG that generates private values, such as key shares, with:
G'(n) = HKDF-Expand(HKDF-Extract(H(Sig(sk, tag1)), G(L)), tag2, n)
6. Implementation Guidance
Recall that the wrapper defined in Section 3 requires L >= n - L',
where L is the Extract output length and n is the desired amount of
randomness. Some applications may require n to exceed this bound.
Wrapper implementations can support this use case by invoking G'
multiple times and concatenating the results.
7. Acknowledgements
We thank Liliya Akhmetzyanova for her deep involvement in the
security assessment in [SecAnalysis]. We thank John Mattsson, Martin
Thomson, Rich Salz for their careful readings and useful comments.
8. IANA Considerations
This document makes no request to IANA.
9. Security Considerations
A security analysis was performed in [SecAnalysis]. Generally
speaking, the following security theorem has been proven: if Adv
learns only one of the signature or the usual randomness generated on
one particular instance, then under the security assumptions on our
primitives, the wrapper construction should output randomness that is
indistinguishable from a random string.
Cremers, et al. Expires 20 February 2021 [Page 6]
Internet-Draft Randomness Improvements August 2020
The main reason one might expect the signature to be exposed is via a
side-channel attack. It is therefore prudent when implementing this
construction to take into consideration the extra long-term key
operation if equipment is used in a hostile environment when such
considerations are necessary. Hence, it is recommended to generate a
key specifically for the purposes of the defined construction and not
to use it another way.
The signature in the construction as well as in the protocol itself
MUST NOT use randomness from entropy sources with dubious security
guarantees. Thus, the signature scheme MUST either use a reliable
entropy source (independent from the CSPRNG that is being improved
with the proposed construction) or be deterministic: if the
signatures are probabilistic and use weak entropy, our construction
does not help and the signatures are still vulnerable due to repeat
randomness attacks. In such an attack, Adv might be able to recover
the long-term key used in the signature.
Under these conditions, applying this construction should never yield
worse security guarantees than not applying it assuming that applying
the PRF does not reduce entropy. We believe there is always merit in
analyzing protocols specifically. However, this construction is
generic so the analyses of many protocols will still hold even if
this proposed construction is incorporated.
The proposed construction cannot provide any guarantees of security
if the CSPRNG state is cloned due to the virtual machine snapshots or
process forking (see [MAFS2017]). It is RECOMMENDED that tag1
incorporate all available information about the environment, such as
process attributes, virtual machine user information, etc.
10. Comparison to RFC 6979
The construction proposed herein has similarities with that of RFC
6979 [RFC6979]: both of them use private keys to seed a deterministic
random number generator. Section 3.3 of RFC 6979 recommends
deterministically instantiating an instance of the HMAC_DRBG
pseudorandom number generator, described in [SP80090A] and Annex D of
[X962], using the private key sk as the entropy_input parameter and
H(m) as the nonce. The construction G'(n) provided herein is
similar, with such difference that a key derived from G(n) and
H(Sig(sk, tag1)) is used as the entropy input and tag2 is the nonce.
However, the semantics and the security properties obtained by using
these two constructions are different. The proposed construction
aims to improve CSPRNG usage such that certain trusted randomness
would remain even if the CSPRNG is completely broken. Using a
signature scheme which requires entropy sources according to RFC 6979
Cremers, et al. Expires 20 February 2021 [Page 7]
Internet-Draft Randomness Improvements August 2020
is intended for different purposes and does not assume possession of
any entropy source - even an unstable one. For example, if in a
certain system all private key operations are performed within an
HSM, then the differences will manifest as follows: the HMAC_DRBG
construction of RFC 6979 may be implemented inside the HSM for the
sake of signature generation, while the proposed construction would
assume calling the signature implemented in the HSM.
11. References
11.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
Key Derivation Function (HKDF)", RFC 5869,
DOI 10.17487/RFC5869, May 2010,
<https://www.rfc-editor.org/info/rfc5869>.
[RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
Algorithm (DSA) and Elliptic Curve Digital Signature
Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
2013, <https://www.rfc-editor.org/info/rfc6979>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
11.2. Informative References
[DebianBug]
Yilek, Scott, et al, ., "When private keys are public -
Results from the 2008 Debian OpenSSL vulnerability", 2009,
<https://pdfs.semanticscholar.org/fcf9/
fe0946c20e936b507c023bbf89160cc995b9.pdf>.
[DualEC] Bernstein, Daniel et al, ., "Dual EC - A standardized back
door", 2016, <https://projectbullrun.org/dual-
ec/documents/dual-ec-20150731.pdf>.
[MAFS2017] McGrew, Anderson, Fluhrer, Shenefeil, ., "PRNG Failures
and TLS Vulnerabilities in the Wild", 2017,
<https://rwc.iacr.org/2017/Slides/david.mcgrew.pptx>.
Cremers, et al. Expires 20 February 2021 [Page 8]
Internet-Draft Randomness Improvements August 2020
[NAXOS] LaMacchia, Brian et al, ., "Stronger Security of
Authenticated Key Exchange", 2007,
<https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/strongake-submitted.pdf>.
[RY2010] Ristenpart, Yilek, ., "When Good Randomness Goes Bad|:|
Virtual Machine Reset Vulnerabilities and Hedging Deployed
Cryptography", 2010,
<https://rist.tech.cornell.edu/papers/sslhedge.pdf>.
[SecAnalysis]
Akhmetzyanova, Cremers, Garratt, Smyshlyaev, Sullivan, .,
"Limiting the impact of unreliable randomness in deployed
security protocols", 2019,
<https://eprint.iacr.org/2018/1057>.
[SP80090A] "Recommendation for Random Number Generation Using
Deterministic Random Bit Generators (Revised), NIST
Special Publication 800-90A.", January 2012, <National
Institute of Standards and Technology>.
[X962] American National Standards Institute, ., "Public Key
Cryptography for the Financial Services Industry -- The
Elliptic Curve Digital Signature Algorithm (ECDSA), ANSI
X9.62-2005", November 2005,
<https://www.techstreet.com/standards/
x9-x9-62-2005?product_id=1327225>.
Authors' Addresses
Cas Cremers
CISPA Helmholtz Center for Information Security
Saarland Informatics Campus
Saarbruecken
Germany
Email: cremers@cispa.saarland
Luke Garratt
Cisco Meraki
500 Terry A Francois Blvd
San Francisco,
United States of America
Email: lgarratt@cisco.com
Cremers, et al. Expires 20 February 2021 [Page 9]
Internet-Draft Randomness Improvements August 2020
Stanislav Smyshlyaev
CryptoPro
18, Suschevsky val
Moscow
Russian Federation
Email: svs@cryptopro.ru
Nick Sullivan
Cloudflare
101 Townsend St
San Francisco,
United States of America
Email: nick@cloudflare.com
Christopher A. Wood
Cloudflare
101 Townsend St
San Francisco,
United States of America
Email: caw@heapingbits.net
Cremers, et al. Expires 20 February 2021 [Page 10]