Internet DRAFT - draft-kappler-nsis-qosmodel-controlledload

draft-kappler-nsis-qosmodel-controlledload






Network Working Group                                         C. Kappler
Internet-Draft                                    ck technology concepts
Intended status: Informational                                     X. Fu
Expires: March 7, 2012                                        B. Schloer
                                                        Univ. Goettingen
                                                       September 4, 2011


  A QoS Model for Signaling IntServ Controlled-Load Service with NSIS
             draft-kappler-nsis-qosmodel-controlledload-14

Abstract

   This document describes a QoS Model to signal IntServ controlled load
   service with QoS NSLP.  QoS NSLP is QoS Model agnostic.  All QoS
   Model specific information is carried in an opaque object, the QSPEC.
   This document hence specifies the QSPEC for controlled load service,
   how the QSPEC must be processed in QoS NSLP nodes, and how QoS NSLP
   messages must be used.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on March 7, 2012.

Copyright Notice

   Copyright (c) 2011 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must



Kappler, et al.           Expires March 7, 2012                 [Page 1]

Internet-Draft            Controlled-Load QOSM            September 2011


   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.




































Kappler, et al.           Expires March 7, 2012                 [Page 2]

Internet-Draft            Controlled-Load QOSM            September 2011


Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  5
   2.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  5
   3.  Signaling with QoS NSLP  . . . . . . . . . . . . . . . . . . .  5
     3.1.  QoS NSLP . . . . . . . . . . . . . . . . . . . . . . . . .  6
     3.2.  QSPEC  . . . . . . . . . . . . . . . . . . . . . . . . . .  6
     3.3.  QoS Model  . . . . . . . . . . . . . . . . . . . . . . . .  7
   4.  IntServ Controlled Load Service  . . . . . . . . . . . . . . .  7
   5.  NSIS QoS Model for IntServ Controlled Load Service . . . . . .  8
     5.1.  Role of QNEs . . . . . . . . . . . . . . . . . . . . . . .  9
     5.2.  QSPEC Definition . . . . . . . . . . . . . . . . . . . . .  9
       5.2.1.  Controlled Load Service Requirements . . . . . . . . .  9
       5.2.2.  QSPEC Objects  . . . . . . . . . . . . . . . . . . . . 10
     5.3.  Usage of QoS NSLP Messages -- QSPEC Procedures . . . . . . 11
   6.  Processing Rules in QNEs . . . . . . . . . . . . . . . . . . . 12
     6.1.  Admission Control  . . . . . . . . . . . . . . . . . . . . 12
     6.2.  Packet Scheduling and Excess Treatment . . . . . . . . . . 13
   7.  Preemption . . . . . . . . . . . . . . . . . . . . . . . . . . 14
   8.  Interoperation with Controlled Load Service Specified in
       RFC2211  . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
   9.  Security Considerations  . . . . . . . . . . . . . . . . . . . 15
   10. IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 15
   11. Conclusions  . . . . . . . . . . . . . . . . . . . . . . . . . 15
   12. References . . . . . . . . . . . . . . . . . . . . . . . . . . 16
     12.1. Normative References . . . . . . . . . . . . . . . . . . . 16
     12.2. Informative References . . . . . . . . . . . . . . . . . . 17
   Appendix A.  Bit level Examples of QSPEC objects for
                Controlled Load QOSM  . . . . . . . . . . . . . . . . 18
     A.1.  Minimal QSPEC objects for Sender-Initiated Reservation . . 18
     A.2.  Extended QSPEC objects for Sender-Initiated Reservation  . 19
     A.3.  Receiver Initiated Reservation (RSVP Style)  . . . . . . . 21
     A.4.  Resource Queries . . . . . . . . . . . . . . . . . . . . . 24
   Appendix B.  Change Tracker  . . . . . . . . . . . . . . . . . . . 25
     B.1.  Changes since -13  . . . . . . . . . . . . . . . . . . . . 25
     B.2.  Changes since -12  . . . . . . . . . . . . . . . . . . . . 25
     B.3.  Changes since -11  . . . . . . . . . . . . . . . . . . . . 25
     B.4.  Changes since -10  . . . . . . . . . . . . . . . . . . . . 25
     B.5.  Changes since -09  . . . . . . . . . . . . . . . . . . . . 26
     B.6.  Changes since -08  . . . . . . . . . . . . . . . . . . . . 26
     B.7.  Changes since -07  . . . . . . . . . . . . . . . . . . . . 26
     B.8.  Changes since -06  . . . . . . . . . . . . . . . . . . . . 26
     B.9.  Changes since -05  . . . . . . . . . . . . . . . . . . . . 26
     B.10. Changes since -04  . . . . . . . . . . . . . . . . . . . . 26
     B.11. Changes since -03  . . . . . . . . . . . . . . . . . . . . 26
     B.12. Changes since -02  . . . . . . . . . . . . . . . . . . . . 26
     B.13. Changes since -01  . . . . . . . . . . . . . . . . . . . . 27
   Appendix C.  Acknowledgements  . . . . . . . . . . . . . . . . . . 27



Kappler, et al.           Expires March 7, 2012                 [Page 3]

Internet-Draft            Controlled-Load QOSM            September 2011


   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 27


















































Kappler, et al.           Expires March 7, 2012                 [Page 4]

Internet-Draft            Controlled-Load QOSM            September 2011


1.  Introduction

   The QoS NSIS Signaling Layer Protocol, QoS NSLP [RFC5974] defines how
   to signal for QoS reservations in the Internet.  The protocol is not
   bound to a specific mechanism for achieving QoS, such as IntServ or
   DiffServ.  Rather, the actual QoS information is carried opaquely in
   the protocol in a separate object, the QSPEC [RFC5974].  A method for
   achieving QoS for a traffic flow is called QoS model.  It is expected
   that a number of QoS models will be developed for QoS NSLP.  Examples
   are [RFC5977] and [RFC5976] and this draft.

   The purpose of this document is to describe a QoS model for
   controlled-load service of IntServ [RFC2211].  In [RFC2210] it is
   specified how to signal for controlled-load service with RSVP.  This
   document describes how to signal for the same service with QoS NSLP.

   The controlled-load service is rather minimal both in terms of
   information that is signaled - basically bandwidth in the form of a
   token bucket - and in terms of prescribed realization of the service
   in the network.  It is therefore suited for a wide range of
   realizations, such as reserving resources per-flow per-network node
   [RFC1633], achieving QoS in appropriately engineered DiffServ
   networks with admission control [RFC2998], or across IP tunnels or
   MPLS Label Switched Paths (LSPs) with reserved bandwidths and
   admission control [RFC2746] [RFC3031].

   The document is structured as follows: It gives a brief overview of
   QoS NSLP and the QSPEC, and the content and features of a QoS model
   as described in [RFC5974] and [RFC5975].  It then gives a brief
   overview of the controlled-load service of IntServ.  Subsequently,
   the actual QoS model for controlled-load service is described.  A
   section describing the interoperation of QoS NSLP and RSVP, both for
   signaling controlled-load service, is also provided.


2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   The terminology defined in [RFC5974] and [RFC5975] applies to this
   document.


3.  Signaling with QoS NSLP





Kappler, et al.           Expires March 7, 2012                 [Page 5]

Internet-Draft            Controlled-Load QOSM            September 2011


3.1.  QoS NSLP

   QoS NSLP [RFC5974] is an NSIS signaling layer protocol for signaling
   QoS reservations in the Internet.  Together with GIST [RFC5971], it
   provides functionality similar to RSVP and extends it, e.g. by
   supporting both sender-initiated and receiver-initiated reservations.
   QoS NSLP however does not support multicast.  QoS NSLP establishes
   and maintains reservation state in QoS NSLP aware nodes, called QNEs,
   along the path of a data flow.  The number or frequency of QNEs is
   not prescribed.  The node initiating a reservation request is called
   QNI, the node terminating the request is called QNR.  QNI and QNR are
   also QNEs, and are not necessarily the actual sender and receiver of
   the data flow they are signaling for as they may also be proxying for
   them.

   QoS NSLP defines four message types, RESERVE, QUERY, RESPONSE and
   NOTIFY.  The message type identifies whether a message manipulates
   state (e.g.  RESERVE) or not (e.g.  QUERY, RESPONSE).  The RESERVE
   message is used to create, refresh, modify or remove reservation
   state in QNEs.  The QUERY message is used to request information
   about the data path without making a reservation.  This functionality
   may be used to 'probe' the path for certain characteristics.  The
   RESPONSE message is used to provide information about the results of
   a previous RESERVE or QUERY message, e.g. confirmation of a
   successful reservation, error, or for transferring results of a QUERY
   back towards the querying node.  A NOTIFY message is sent
   asynchronously and need not refer to any previously received message.
   The information conveyed by a NOTIFY message is typically related to
   error conditions.

3.2.  QSPEC

   QoS NSLP carries QoS Model specific information encapsulated in an
   opaque object, the QSPEC [RFC5975].  The QSPEC thus fulfills a
   similar purpose as TSpec, RSpec and AdSpec in RSVP [RFC2205].  The
   QSPEC is not interpreted by the QoS NSLP Processing unit on a QNE,
   but passed as-is to the Resource Management Function RMF, usually
   located on the same node, where it is interpreted.

   The QSPEC is composed of QSPEC objects, namely <QoS Desired>, <QoS
   Available>, <QoS Reserved> and <Minimum QoS>.  A QSPEC typically only
   contains a subset of these objects.  QSPEC objects contain a set of
   QSPEC parameters that govern the processing of the resource request
   in the RMF, e.g. information on excess treatment.
   o  <QoS Desired> contains parameters describing the QoS desired by a
      QNI.





Kappler, et al.           Expires March 7, 2012                 [Page 6]

Internet-Draft            Controlled-Load QOSM            September 2011


   o  <QoS Available> contains parameters describing the available
      resources.  In the controlled load service QOSM, this QSPEC object
      is used to collect information on the available bandwidth along a
      path.
   o  <QoS Reserved> describes the actual QoS reserved.
   o  <Minimum QoS> can be included by a QNI together with QoS Desired
      to signal a range of QoS (between QoS Desired and Minimum QoS) is
      acceptable.

   The QSPEC template [RFC5975] defines a number of QSPEC parameters.
   <TMOD1> provides a description of the traffic for which resources are
   reserved.  This parameter MUST be interpreted by each QNE along the
   path.  All other QSPEC parameters MAY be signaled by the QNI if they
   are applicable to the underlying QOS desired.  The QNI sets the
   M-Flag if they must be interpreted by downstream QNEs.  If the
   parameter cannot be interpreted by a QNE the reservation fails.  A
   QSPEC parameter without set M-Flag should be interpreted by the QNE
   but may be ignored if it cannot be interpreted.  In a given QoS
   Model, new optional parameters may be defined.

3.3.  QoS Model

   A QoS-enabled domain supports a particular QoS model (QOSM), which is
   a method to achieve QoS for a traffic flow, such as IntServ
   Controlled Load or DiffServ [RFC2475].  QoS NSLP is independent of
   the QOSM, just as RSVP [RFC2205] is independent of IntServ.  A QOSM
   hence incorporates QoS provisioning methods and a QoS architecture.
   It however also defines how to use QoS NSLP.  It therefore defines
   the behavior of the resource management function (RMF), including
   inputs and outputs, and how QSPEC information on traffic description,
   resources required, resources available, and control information
   required by the RMF is interpreted.  A QOSM also specifies the QSPEC
   parameters that describe the QoS and how resources will be managed by
   the RMF.


4.  IntServ Controlled Load Service

   As specified in [RFC2211], the controlled-load service defined for
   IntServ supports applications which are highly sensitive to overload
   conditions, e.g. real-time applications.  The controlled-load service
   provides to an application approximately the end-to-end service of an
   unloaded best-effort network.  "Unloaded" thereby is used in the
   sense of "not heavily loaded or congested" rather than in the sense
   of "no other network traffic".

   The definition of controlled-load service is intentionally imprecise.
   It implies a very high percentage of transmitted packets will be



Kappler, et al.           Expires March 7, 2012                 [Page 7]

Internet-Draft            Controlled-Load QOSM            September 2011


   successfully delivered to the end nodes.  Furthermore, the transit
   delay experienced by a very high percentage of the delivered packets
   will not greatly exceed the minimum transmit delay experienced by any
   successfully delivered packet.  In other words, a short disruption of
   the service is viewed as a statistical effect which may occur in
   normal operation.  Events of longer duration are indicative of
   failure to allocate sufficient resources to the controlled-load flow.

   In order to ensure that the conditions on controlled-load service are
   met, clients requesting the service provide network elements on the
   data path with an estimation of the data traffic they are going to
   generate.  When signaling with RSVP, the object carrying this
   estimation is called TSpec.  In return, the service ensures that in
   each network element on the data path, resources adequate to process
   traffic falling within this descriptive envelope will be available to
   the client.  This must be accomplished by admission control.

   The controlled-load service is implemented per-flow in each network
   element on the data-path.  Thereby, a network element may be an
   individual node such as a router.  However, a network element can
   also be a subnet, e.g. a DiffServ cloud within a larger IntServ
   network [RFC2998].  In this case, the per-flow traffic description
   (e.g. carried in the RSVP TSpec) together with the DiffServ Code
   Point (carried e.g. in the DCLASS object [RFC2996] of RSVP) is used
   for admission control into the DiffServ cloud.  The DiffServ cloud
   MUST ensure it provides controlled-load service.  It is also possible
   to operate controlled-load service over logical links such as IP
   tunnels [RFC2746] or MPLS LSPs [RFC3031].  The per-flow traffic
   descriptor is in this case used for admission control into the
   tunnel/LSP.


5.  NSIS QoS Model for IntServ Controlled Load Service

   According to [RFC5975], a QOSM MUST include the following
   information:
   o  role of QNEs, e.g., location, frequency, statefulness, etc.
   o  QSPEC definition including QSPEC parameters
   o  QSPEC procedures applicable to this QOSM
   o  QNE processing rules describing how QSPEC information is treated
      and interpreted in the RMF, e.g., admission control, scheduling,
      policy control, QoS parameter accumulation (e.g., delay).
   o  at least one bit-level QSPEC example
   o  QSPEC parameter behavior for new QSPEC parameters the QOSM
      specification defines
   o  a defininition of what happens in case of preemption if the
      default QNI behavior (tear down preempted reservation) is not
      followed



Kappler, et al.           Expires March 7, 2012                 [Page 8]

Internet-Draft            Controlled-Load QOSM            September 2011


   A QOSM specification MAY include the following information:
   o  defininitions of additional QOSM-specific error codes
   o  the QoS NSLP options a QOSM wants to use, when several options are
      available for a QOSM (e.g., Local QSPEC to either a) hide
      Initiator QSPEC within a local domain message, or b) encapsulate
      Initiator QSPEC).

   Subsequent sections treat these points one-by-one.  Several example
   bit-level QSPEC formats are given in Appendix A.

5.1.  Role of QNEs

   Controlled-load service network elements can be individual routers or
   subnets.  I.e. it is not necessary for each network node on the data
   path to interpret the signaling for the service.  Rather, dedicated
   nodes MAY interpret signaling information and take on responsibility
   that the subnet they represent delivers adequate service.  In fact,
   this setting maps nicely onto QoS NSLP - and the NSIS protocol suite
   in general.  In NSIS, QNEs are just required to be located on the
   data path.  However there are no prescriptions regarding their number
   or frequency.  Hence, in the controlled-load QoS model, there MUST be
   (at least) one QNE acting on behalf of every network element.  For
   example all ingress routers to a DiffServ cloud could be QNEs,
   performing admission control.  If there is more than one network
   element per QNE, they MUST be coordinated among to ensure they
   delivers controlled-load service.  Controlled Load QNEs are always
   stateful.

5.2.  QSPEC Definition

5.2.1.  Controlled Load Service Requirements

   The controlled-load service QOSM uses TMOD1 parameters[RFC5975],
   which consist of a token bucket specification (i.e. bucket rate r and
   a bucket depth b) plus a peak rate (p), a minimum policed unit (m)
   and a maximum packet size (MPS).  The minimum policed unit m is an
   integer measured in bytes.  All IP datagrams of size less than m are
   counted against the token bucket as being of size m.  For more
   details, including value ranges of the parameters see [RFC2210].

   The TMOD1 parameter contains a maximum packet size (MPS), as the
   original token bucket does (MTU).  When using RSVP to signal for
   controlled-load services, the PATH message collects information on
   MTU and available bandwidth which is used by the receiver to adapt
   the reservation parameters in the RESV message [RFC2210][RFC2215].
   In QoS NSLP the TMOD1 parameter collecting resource information on
   the path may be included in QUERY, RESERVE or RESPONSE messages.




Kappler, et al.           Expires March 7, 2012                 [Page 9]

Internet-Draft            Controlled-Load QOSM            September 2011


   Available bandwidth may be collected if desired and used for
   controlled load service QOSM.  The controlled-load service has no
   required characterization parameters the QNI needs to be informed
   about, i.e. current measurement and monitoring information need not
   be exported by QNEs, although individual implementations may do so if
   they wish.

5.2.2.  QSPEC Objects

   The QSPEC can contain some or all of the following objects:

   <QoS Desired> = <TMOD1>

   <QoS Available> = <TMOD1>

   <Minimum QoS> = <TMOD1>

   <QoS Reserved> = <TMOD1>

   Among them, <QoS Desired>, <QoS Available> and <QoS Reserved> MUST be
   supported by all QOSM implementations, as defined in [RFC5975].

   <QoS Available> is required for receiver-initiated reservations with
   object combination 1 and 2, and object combination 1 and 2 in sender-
   initiated reservations.  It is used for gathering available bandwidth
   information along the path.  This information can be used by the QNI
   (or QNR, for receiver-initiated reservations) to make an appropriate
   reservation thereafter, particularly to re-issue a failed
   reservation.  Since only bandwidth is needed, set the <TMOD1>
   parameters r = peak rate = p, b = large, m = large and for TCP
   traffic, r = average rate, b = large, p = large.

   <Minimum QoS> MAY be supported by QNEs and is optional to implement
   and to use.  If supported it always travels together with <QoS
   Desired>.  It signifies that the QNI can accept a downgrade of
   resources for particular parameters in the reservation, down to the
   value of the respective parameter in <Minimum QoS>.  For parameters
   not appearing in <Minimum QoS>, it cannot accept a downgrade.  For
   controlled load service this means if <Minimum QoS> is included, a
   downgrade of all TMOD1 parameters is possible.

   Furthermore, the Excess Treatment parameter MAY be included as
   parameter.  Currently supported values are "drop", "shape" or "re-
   mark".  The default value for the Controlled Load QOSM if not
   included is "shape".  This parameter is used for a controlled load
   service implementation to handle the received data traffic belonging
   to a controlled load flow which is "non-conformant" to the TMOD1
   specification reserved.  Traffic is considered "non-conformant" when:



Kappler, et al.           Expires March 7, 2012                [Page 10]

Internet-Draft            Controlled-Load QOSM            September 2011


   o  over time period T, the amount of data received exceeds rT+b; or
   o  data rate of the traffic exceeds the peak rate p; or
   o  data packet size is larger than M or the QNE's outgoing link MTU

   In all QSPEC objects additional parameters MAY be included, as
   described in [RFC5975].

5.3.  Usage of QoS NSLP Messages -- QSPEC Procedures

   QoS NSLP allows a variety of message sequences for reserving
   resources ("QSPEC Procedures").  Particularly, sender-initiated,
   receiver-initiated and bi-directional messages are possible.  E.g.,
   in sender-initiated reservations, a RESERVE is issued by the QNI.  If
   the reservation is successful, the QNR replies with a RESPONSE.  If
   the reservation fails, the QNE at which it failed sends an INFO_SPEC
   object indicating this failure towards the QNI.

   The QSPEC template defines what QSPEC objects are carried in which of
   these messages, and how they are translated from message-to-message.
   For each of the message patterns defined in QoS NSLP, a variety of
   QSPEC object usages, the so-called QSPEC Procedures, are possible.
   o  in the simplest message sequence, sender-initiated reservations,
      the RESERVE may carry just <QoS Desired> to indicate the exact QoS
      it wants, and the corresponding RESPONSE carries solely <QoS
      Reserved>.  This implies either the exact resources described in
      <QoS Desired> are reserved, or the reservation fails.
   o  A more advanced QNI would include, in addition to <QoS Desired>, a
      <QoS Available> QSPEC object, or even a <Minimum QoS>. <QoS
      Available> allows collecting path properties, e.g. currently
      available TMOD1, and <Minimum QoS> signals that (and how much)
      less resources than <QoS Desired> are acceptable.  The RESPONSE
      message carries <QoS Reserved>, and additionally copies the <QoS
      Available> QSPEC Object from RESERVE.  This information may be of
      particular interest if a reservation failed.  Note however, that
      since the QNE failing the reservation sends the RESPONSE, no
      complete end-to-end information on e.g. bandwidth can be collected
      and delivered to the QNI.
   o  In an "RSVP-style" receiver-initiated reservation, the sender
      (QNR) issues a QUERY with <QoS Desired> specifying the desired
      resources and <QoS Available> collecting information on available
      TMOD1 parameters.  The receiver (QNI) reacts with a RESERVE
      message containing <QoS Desired> with a TMOD1. <QoS Available> is
      copied from the QUERY message.  The signaling exchange is
      concluded with a RESPONSE by the QNR including a <QoS Reserved>
      echoing the TMOD1 that was reserved.

   Note that the initial message triggering the signaling exchange fully
   determines the sequencing of subsequent messages, and also determines



Kappler, et al.           Expires March 7, 2012                [Page 11]

Internet-Draft            Controlled-Load QOSM            September 2011


   what QSPEC objects will be carried in them.  That is, only the QNI
   for sender initiated reservation and the QNR for receiver initiated
   reservation have freedom in choosing a particular QSPEC procedure.
   Other QNEs can only react to this.

   The controlled load service parameters can be signaled with any QSPEC
   procedure.  Note, in contrast, in RSVP only one type of message
   exchange is defined (receiver-initiated reservations, and the
   equivalent of <Minimum QoS> = 0).  However, this is a characteristic
   of RSVP rather than of the controlled load service.


6.  Processing Rules in QNEs

6.1.  Admission Control

   For controlled-load service, QNEs are required to perform admission
   control.  All resources important to the operation of the network
   element MUST be considered when admitting a request.  Common examples
   of such resources include link bandwidth, router or switch port
   buffer space, and computational capacity of the packet forwarding
   engine.  It is not prescribed how a QNE determines adequate resources
   are available.  It is however required that they make bandwidth
   greater than the token rate available to the flow in certain
   situations in order to account for fluctuations.  E.g. statistical
   methods may be used to determine how much bandwidth is necessary.

   During the admission control, the controlled-load service TMOD1
   parameters MUST be met according to the following rule: a TMOD1 A
   from the available resources for a flow MUST be "as good or better
   than" or "greater than or equal to" TMOD1 B (which is carried in the
   received QoS Description, e.g., <QoS Desired>, or <Minimum QoS> if
   available), i.e.,:
   o  the TMOD1 rate r for TMOD1 A is greater than or equal to that of
      TMOD1 B, and
   o  the TMOD1 depth b for TMOD1 A is greater than or equal to that of
      TMOD1 B, and
   o  the peak rate p for TMOD1 A is greater than or equal to that of
      TMOD1 B, and
   o  the minimum policed unit m for TMOD1 A is less than or equal to
      that of TMOD1 B, and
   o  the maximum packet size MPS of TMOD1 A is greater than or equal to
      that of TMOD1 B.

   Remark: these rules come originally from rules for ordering TMOD1s in
   [RFC2211].

   There are no target values for other parameters, e.g. delay or loss,



Kappler, et al.           Expires March 7, 2012                [Page 12]

Internet-Draft            Controlled-Load QOSM            September 2011


   other than providing a service closely equivalent to that provided to
   best-effort traffic under lightly loaded conditions.

   Resource requests for new flows are accepted if capacity is
   available.  Reservation modifications are accepted if the new <TMOD1>
   is strictly smaller than the old one.  Otherwise they are treated
   like new reservations from an admission control perspective.

6.2.  Packet Scheduling and Excess Treatment

   A QNE MUST ensure the TMOD1 requirements for any individual flow
   given at setup time are met locally.  That is, traffic MUST obey the
   rule that over all time periods, the amount of data sent does not
   exceed rT+b.  Packets smaller than m are counted as of size m.  A
   basic requirement for packet scheduling is that the QNE MUST ensure
   the QoS requirements are met for traffic belonging to flows whose
   traffic are all conformant.

   In presence of arriving non-conformant traffic, the QNE MUST behave
   as follows:
   o  the QNE MUST continue to provide the contracted QoS for traffic
      belonging to flows which are all conformant.
   o  the QNE SHOULD prevent excess control load traffic from unfairly
      impacting the handling of arriving best-effort traffic.
   o  While fulfilling the above two requirements, the QNE MUST attempt
      to forward the excess traffic on a best-effort basis if sufficient
      resources are available, unless indicated differently by <Excess
      Treatment>.

   Several basic approaches for excess treatment are suggested in
   [RFC2211] and reused here, although other alternatives are possible,
   if available.  A simple approach is the priority mechanism, namely,
   to let the QNE process excess controlled-load traffic at a lower
   priority than the elastic best-effort traffic, especially when the
   most controlled-load traffic arises from non-rate-adaptive real-time
   applications.

   The second approach is that a QNE can maintain separate flow classes
   (e.g., one for each non-conformant controlled-load traffic, one for
   inelastic best-effort flows, and another from elastic best-effort
   flows), where packet scheduling mechanisms like Fair Queueing or
   Weight Fair Queueing can be used.  One implementation, for instance,
   could allocate each controlled-load flow a 1/N "fair share"
   percentage of the available best effort bandwidth for its excess
   traffic.

   Finally, Random Early Detection (RED) queueing mechanism may be used.




Kappler, et al.           Expires March 7, 2012                [Page 13]

Internet-Draft            Controlled-Load QOSM            September 2011


7.  Preemption

   The controlled-load service QOSM makes use of the <Preemption
   Priority> and <Defending Priority> parameter to preempt flows.  A new
   flow with higher <Preemption Priority> can preempt an already
   admitted flow with lower <Defending Priority>.  One single higher
   priority flow can replace more than one lower priority flow until the
   requested amount of <TMOD1> is met.  Once the flow is admitted
   <Preemption Priority> becomes irrelevant.  More details about
   Preemption and Defending Priority are provided in [RFC3181].


8.  Interoperation with Controlled Load Service Specified in RFC2211

   The controlled-load service QOSM is intended to be consistent with
   the RSVP/Controlled Load Service specified in [RFC2211], although the
   signaling protocols used are QoS NSLP and RSVP, respectively.  This
   section discusses how a router implementing both RSVP and QoS NSLP
   could translate from one to the other.

   The following is a table that contains a mapping of messages, objects
   and parameters between QoS NSLP and RSVP for the specific case of
   controlled-load signaling using the "RSVP-style" receiver-initiated
   signaling described in Appendix A.3.



            | Message     | Object(s)          | Parameter(s)
   --------------------------------------------------------------------
   RSVP     | Path        | Sender TSpec       | token bucket
            |             | ADSpec             | avail. bw and MTU
   QoS NSLP | QUERY       | <QoS Desired>      | <TMOD1>
            |             | <QoS Available>    | <TMOD1>
            |             |                    |
   RSVP     | Resv        | FlowSpec           | token bucket
   QoS NSLP | RESERVE     | <QoS Desired>      | <TMOD1>
            |             | <QoS Available>    | <TMOD1>
            |             |                    |
   RSVP     | ResvConfirm |                    |
   QoS NSLP | RESPONSE    | <QoS Reserved>     | <TMOD1>



   Please note that TMOD1 in <QoS Available> specifies bandwidth only.
   See Section Section 5.2.2 how to set bandwidth in TMOD.

   A RSVP Path Message includes a SenderTSPEC specifying the traffic an
   application is going to send.  The RSVP AdSpec is optionally



Kappler, et al.           Expires March 7, 2012                [Page 14]

Internet-Draft            Controlled-Load QOSM            September 2011


   included.  It probes for the available bandwidth on the data path.
   This reservation model is referred to as One Pass with Advertising
   (OPWA).  When the AdSpec is omitted, the Receiver cannot determine
   the available resources for the resulting end-to-end QoS.  This
   reservation model is referred to as One Pass.  On arrival at the
   Receiver the FlowSpec, consisting of the TSpec, is created.  The
   TSpec is usually derived from the SenderTSpec and if available from
   the AdSpec.  It contains the desired QoS.  The Resv message is sent
   upstream to the Sender.  At each hop the desired resource reservation
   is reserved.  The last node sends a ResvConf back to the Receiver to
   indicate that end-to-end reservation has been installed.

   In QoS NSLP, the sender populates the QoS which it desires by
   including a <QoS Desired> and optionally queries the network for the
   QoS that is available.  In this case it carries the <QoS Available>
   parameter which is updated by all QNEs to reflect the QoS that is
   actually available.  With the <QoS Desired> object, the Receiver
   (QNI) is informed about the requested resources.  See Section 5.3 for
   a detailed description of QSPEC procedures for controlled-load
   service.


9.  Security Considerations

   This document does not raise additional security issues beyond those
   described in [RFC5974] and [RFC5975].


10.  IANA Considerations

   A new QOSM ID ("Controlled-Load Service QOSM") needs to be assigned
   by IANA.


11.  Conclusions

   This document describes a QoS Model to signal IntServ controlled load
   service with QoS NSLP.  Up to now, it was only described how to
   signal for IntServ controlled load service with RSVP.  Since no
   independent document exists that describes IntServ controlled load by
   its own, i.e. without RSVP, it is sometimes difficult to determine
   what features are specific to IntServ controlled load, and which
   features are specific to RSVP.

   The QoS NSLP QOSM for controlled load service allows a variety of
   message exchanges all eventually resulting in a reservation, e.g.
   sender-initiated, receiver-initiated and bidirectional signaling.
   The controlled load service when signaled with RSVP was bound to



Kappler, et al.           Expires March 7, 2012                [Page 15]

Internet-Draft            Controlled-Load QOSM            September 2011


   receiver-initiated reservations.

   When signaling with RSVP, it is not possible to define a range of
   acceptable QoS.  Also this seems to be a characteristic of RSVP
   rather than a feature of the controlled load service.

   An issue of general interest discovered here concerns feedback of
   information in sender-initiated scenarios (In receiver-initiated
   scenarios it does not occur because path information is collected
   before the RESERVE is issued).  A QNI may include in <QoS Available>
   several parameters, e.g. bandwidth, which it would like to measure
   along the data path.  If the reservation fails, e.g. because the
   desired bandwidth was to large, the QNE failing the reservation
   returns a RESPONSE, including the <QoS Available> QSPEC object with
   accumulated information up to this point.  The QNI can learn from
   this why the reservation failed at this particular QNE.  However it
   cannot be sure a subsequent downgraded RESERVE will be more
   successful.  This is because there may be even more difficult
   conditions (e.g. even less bandwidth) down the path.  That is, in
   sender-initiated scenarios it is not straightforward to receive
   feedback from a failed reservation that allows to make a good guess
   at what size of reservation would be more successful.  Of course it
   would be possible for the QNI to issue a QUERY first to find out
   about a suitable value for, e.g. maximum packet size.  However this
   adds another round-trip time to the reservation, thereby obsoleting
   one of the main benefits of sender-initiated reservations compared to
   receiver-initiated ones.

   In this draft, the feedback problem is solved by including a <Minimum
   QoS> QSPEC object in sender-initiated reservations.  This gives some
   flexibility as it implicitly says the QNI would also accept a
   downgraded reservation, up to the value specified.


12.  References

12.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2211]  Wroclawski, J., "Specification of the Controlled-Load
              Network Element Service", RFC 2211, September 1997.

   [RFC5974]  Manner, J., Karagiannis, G., and A. McDonald, "NSIS
              Signaling Layer Protocol (NSLP) for Quality-of-Service
              Signaling", RFC 5974, October 2010.




Kappler, et al.           Expires March 7, 2012                [Page 16]

Internet-Draft            Controlled-Load QOSM            September 2011


   [RFC5975]  Ash, G., Bader, A., Kappler, C., and D. Oran, "QSPEC
              Template for the Quality-of-Service NSIS Signaling Layer
              Protocol (NSLP)", RFC 5975, October 2010.

12.2.  Informative References

   [RFC1633]  Braden, B., Clark, D., and S. Shenker, "Integrated
              Services in the Internet Architecture: an Overview",
              RFC 1633, June 1994.

   [RFC2205]  Braden, B., Zhang, L., Berson, S., Herzog, S., and S.
              Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
              Functional Specification", RFC 2205, September 1997.

   [RFC2210]  Wroclawski, J., "The Use of RSVP with IETF Integrated
              Services", RFC 2210, September 1997.

   [RFC2215]  Shenker, S. and J. Wroclawski, "General Characterization
              Parameters for Integrated Service Network Elements",
              RFC 2215, September 1997.

   [RFC2475]  Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
              and W. Weiss, "An Architecture for Differentiated
              Services", RFC 2475, December 1998.

   [RFC2746]  Terzis, A., Krawczyk, J., Wroclawski, J., and L. Zhang,
              "RSVP Operation Over IP Tunnels", RFC 2746, January 2000.

   [RFC2996]  Bernet, Y., "Format of the RSVP DCLASS Object", RFC 2996,
              November 2000.

   [RFC2998]  Bernet, Y., Ford, P., Yavatkar, R., Baker, F., Zhang, L.,
              Speer, M., Braden, R., Davie, B., Wroclawski, J., and E.
              Felstaine, "A Framework for Integrated Services Operation
              over Diffserv Networks", RFC 2998, November 2000.

   [RFC3031]  Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
              Label Switching Architecture", RFC 3031, January 2001.

   [RFC3181]  Herzog, S., "Signaled Preemption Priority Policy Element",
              RFC 3181, October 2001.

   [RFC5971]  Schulzrinne, H. and R. Hancock, "GIST: General Internet
              Signalling Transport", RFC 5971, October 2010.

   [RFC5976]  Ash, G., Morton, A., Dolly, M., Tarapore, P., Dvorak, C.,
              and Y. El Mghazli, "Y.1541-QOSM: Model for Networks Using
              Y.1541 Quality-of-Service Classes", RFC 5976,



Kappler, et al.           Expires March 7, 2012                [Page 17]

Internet-Draft            Controlled-Load QOSM            September 2011


              October 2010.

   [RFC5977]  Bader, A., Westberg, L., Karagiannis, G., Kappler, C., and
              T. Phelan, "RMD-QOSM: The NSIS Quality-of-Service Model
              for Resource Management in Diffserv", RFC 5977,
              October 2010.


Appendix A.  Bit level Examples of QSPEC objects for Controlled Load
             QOSM

A.1.  Minimal QSPEC objects for Sender-Initiated Reservation

   The first example shows a "minimal" QSPEC for Controlled Load
   containing the least number of objects and parameters.  It signals
   for sender initiated reservations, containing the TMOD1 for <QoS
   Desired> and for <QoS Reserved>.  The difference between the QSPEC in
   the RESERVE and the RESPONSE message is only slight.


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Vers.|I|QSPECType|r|r|QSPEC Proc.=0/0|      Length = 7       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |E|r|r|r|  Type = 0 (QoS Des.)  |r|r|r|r|      Length = 6       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|0|r|    ID = 1 <TMOD-1>    |r|r|r|r|      Length = 5       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Rate-1 (r) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Size-1 (b) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Peak Data Rate-1 (p) (32-bit IEEE floating point number)     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Minimum Policed Unit-1 (m) (32-bit unsigned integer)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Maximum Packet Size-1 (MPS) (32-bit unsigned integer)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Fig. 1 An Example QSPEC for Sender-Initiated Reservation(RESERVE)










Kappler, et al.           Expires March 7, 2012                [Page 18]

Internet-Draft            Controlled-Load QOSM            September 2011


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Vers.|I|QSPECType|r|r|QSPEC Proc.=0/0|      Length = 7       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |E|r|r|r|  Type = 2 (QoS Res.)  |r|r|r|r|      Length = 6       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|0|r|    ID = 1 <TMOD-1>    |r|r|r|r|      Length = 5       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Rate-1 (r) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Size-1 (b) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Peak Data Rate-1 (p) (32-bit IEEE floating point number)     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Minimum Policed Unit-1 (m) (32-bit unsigned integer)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Maximum Packet Size-1 (MPS) (32-bit unsigned integer)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Fig.2 An Example QSPEC for Sender-Initiated Reservation(RESPONSE)

A.2.  Extended QSPEC objects for Sender-Initiated Reservation

   The following QSPEC offers a range of acceptable bandwidth in case
   the request of <QoS Desired> cannot be fulfilled.  When <QoS
   Available> becomes lower than <Minimum QoS> the reservation fails.
   The requesting node gets informed by <QoS Available> about the
   remaining resources.  See [RFC5975] for details.  The optional
   <Excess Treatment> parameter defines the behavior of the traffic
   conditioner how to handle out of profile traffic.


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Vers.|I|QSPECType|r|r|QSPEC Proc.=0/2|      Length = 23      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |E|r|r|r|   Type = 0 (QoS Des.) |r|r|r|r|      Length = 8       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|0|r|    ID = 1 <TMOD-1>    |r|r|r|r|      Length = 5       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Rate-1 (r) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Size-1 (b) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Peak Data Rate-1 (p) (32-bit IEEE floating point number)     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Kappler, et al.           Expires March 7, 2012                [Page 19]

Internet-Draft            Controlled-Load QOSM            September 2011


    |  Minimum Policed Unit-1 (m) (32-bit unsigned integer)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Maximum Packet Size-1 (MPS) (32-bit unsigned integer)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |M|E|N|r|  ID = 11 <Excess Tr.> |r|r|r|r|      Length = 1       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Excess Trtmnt |Re-mark Val|             Reserved              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |E|r|r|r| Type = 1 (QoS Avail.) |r|r|r|r|      Length = 6       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|0|r|    ID = 1 <TMOD-1>    |r|r|r|r|      Length = 5       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Rate-1 (r) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Size-1 (b) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Peak Data Rate-1 (p) (32-bit IEEE floating point number)     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Minimum Policed Unit-1 (m) (32-bit unsigned integer)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Maximum Packet Size-1 (MPS) (32-bit unsigned integer)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |E|r|r|r|  Type = 3 (Min. QoS)  |r|r|r|r|      Length = 6       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|0|r|    ID = 1 <TMOD-1>    |r|r|r|r|      Length = 5       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Rate-1 (r) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Size-1 (b) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Peak Data Rate-1 (p) (32-bit IEEE floating point number)     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Minimum Policed Unit-1 (m) (32-bit unsigned integer)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Maximum Packet Size-1 (MPS) (32-bit unsigned integer)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


     Fig.3 Example QSPEC for Sender-Initiated Reservation(RESERVE)












Kappler, et al.           Expires March 7, 2012                [Page 20]

Internet-Draft            Controlled-Load QOSM            September 2011


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Vers.|I|QSPECType|r|r|QSPEC Proc.=0/2|      Length = 14      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |E|r|r|r|  Type = 2 (QoS Res.)  |r|r|r|r|      Length = 6       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|0|r|    ID = 1 <TMOD-1>    |r|r|r|r|      Length = 5       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Rate-1 (r) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Size-1 (b) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Peak Data Rate-1 (p) (32-bit IEEE floating point number)     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Minimum Policed Unit-1 (m) (32-bit unsigned integer)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Maximum Packet Size-1 (MPS) (32-bit unsigned integer)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |E|r|r|r| Type = 1 (QoS Avail.) |r|r|r|r|      Length = 6       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|0|r|    ID = 1 <TMOD-1>    |r|r|r|r|      Length = 5       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Rate-1 (r) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Size-1 (b) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Peak Data Rate-1 (p) (32-bit IEEE floating point number)     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Minimum Policed Unit-1 (m) (32-bit unsigned integer)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Maximum Packet Size-1 (MPS) (32-bit unsigned integer)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Fig.4 Example QSPEC for Sender-Initiated Reservation(RESPONSE)

A.3.  Receiver Initiated Reservation (RSVP Style)

   This is an example for an 'RSVP-style' reservation using a 3-way
   handshake.  The QNR as the sender issues a QUERY and informs the QNI
   at the receiver about the desired bandwidth.  The requested resources
   are contained in <QoS Desired>.  Resource information about the path
   is collected in <QoS Available>.  The receiver copies the content of
   <QoS Available> into <QoS Desired>.  The QNI is updated about
   available resources before sending the RESERVE.  A RESPONSE is sent
   back to confirm the reservation.





Kappler, et al.           Expires March 7, 2012                [Page 21]

Internet-Draft            Controlled-Load QOSM            September 2011


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Vers.|I|QSPECType|r|r|QSPEC Proc.=1/2|      Length = 14      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |E|r|r|r|   Type = 0 (QoS Des.) |r|r|r|r|      Length = 6       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|0|r|    ID = 1 <TMOD-1>    |r|r|r|r|      Length = 5       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Rate-1 (r) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Size-1 (b) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Peak Data Rate-1 (p) (32-bit IEEE floating point number)     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Minimum Policed Unit-1 (m) (32-bit unsigned integer)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Maximum Packet Size-1 (MPS) (32-bit unsigned integer)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Minimum Policed Unit-1 [m] (32-bit unsigned integer)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |E|r|r|r| Type = 1 (QoS Avail.) |r|r|r|r|      Length = 6       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|0|r|    ID = 1 <TMOD-1>    |r|r|r|r|      Length = 5       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Rate-1 (r) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Size-1 (b) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Peak Data Rate-1 (p) (32-bit IEEE floating point number)     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Minimum Policed Unit-1 (m) (32-bit unsigned integer)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Maximum Packet Size-1 (MPS) (32-bit unsigned integer)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Fig.5 Example QSPEC for Receiver-Initiated Reservation(QUERY)














Kappler, et al.           Expires March 7, 2012                [Page 22]

Internet-Draft            Controlled-Load QOSM            September 2011


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Vers.|I|QSPECType|r|r|QSPEC Proc.=1/2|      Length = 14      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |E|r|r|r|   Type = 0 (QoS Des.) |r|r|r|r|      Length = 6       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|0|r|    ID = 1 <TMOD-1>    |r|r|r|r|      Length = 5       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Rate-1 (r) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Size-1 (b) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Peak Data Rate-1 (p) (32-bit IEEE floating point number)     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Minimum Policed Unit-1 (m) (32-bit unsigned integer)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Maximum Packet Size-1 (MPS) (32-bit unsigned integer)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |E|r|r|r| Type = 1 (QoS Avail.) |r|r|r|r|      Length = 6       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|0|r|    ID = 1 <TMOD-1>    |r|r|r|r|      Length = 5       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Rate-1 (r) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Size-1 (b) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Peak Data Rate-1 (p) (32-bit IEEE floating point number)     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Minimum Policed Unit-1 (m) (32-bit unsigned integer)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Maximum Packet Size-1 (MPS) (32-bit unsigned integer)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Fig.6 Example QSPEC for Receiver-Initiated Reservation(RESERVE)
















Kappler, et al.           Expires March 7, 2012                [Page 23]

Internet-Draft            Controlled-Load QOSM            September 2011


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Vers.|I|QSPECType|r|r|QSPEC Proc.=1/2|      Length = 7       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |E|r|r|r| Type = 2 (QoS Res.)   |r|r|r|r|      Length = 6       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|0|r|    ID = 1 <TMOD-1>    |r|r|r|r|      Length = 5       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Rate-1 (r) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Size-1 (b) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Peak Data Rate-1 (p) (32-bit IEEE floating point number)     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Minimum Policed Unit-1 (m) (32-bit unsigned integer)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Maximum Packet Size-1 (MPS) (32-bit unsigned integer)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Fig.7 Example QSPEC for Receiver-Initiated Reservation(RESPONSE)

A.4.  Resource Queries

   The QUERY message is used to collect information about available
   bandwidth along the path.  It does not manipulate any state.  In
   response to the <QoS Desired> a <QoS Available> object describing the
   resources is returned.























Kappler, et al.           Expires March 7, 2012                [Page 24]

Internet-Draft            Controlled-Load QOSM            September 2011


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Vers.|I|QSPECType|r|r|QSPEC Proc.=2/0|      Length = 7       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |E|r|r|r| Type = 1 (QoS Avail.) |r|r|r|r|      Length = 6       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1|E|0|r|    ID = 1 <TMOD-1>    |r|r|r|r|      Length = 5       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Rate-1 (r) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  TMOD Size-1 (b) (32-bit IEEE floating point number)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Peak Data Rate-1 (p) (32-bit IEEE floating point number)     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Minimum Policed Unit-1 (m) (32-bit unsigned integer)         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Maximum Packet Size-1 (MPS) (32-bit unsigned integer)        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Fig.8 Example QSPEC for Resource Queries (QUERY and RESPONSE)

   Other scenarios can be easily derived by adapting to the QoS NSLP
   signaling procedure and used QoS specifications.


Appendix B.  Change Tracker

B.1.  Changes since -13

   1.  Editorial changes made

B.2.  Changes since -12

   1.  References updated

B.3.  Changes since -11

   1.  Editorial changes made

B.4.  Changes since -10

   1.  Updated Bit level Examples of QSPEC object to current Object
   format

   2.  Removed discussion about collecting path MTU





Kappler, et al.           Expires March 7, 2012                [Page 25]

Internet-Draft            Controlled-Load QOSM            September 2011


B.5.  Changes since -09

   1.  Updated Bit level Examples of QSPEC object to current Object
   format

   2.  Editorial changes made

B.6.  Changes since -08

   1.  Removed discussion about number of hops not implementing the CLS
   QoSM in section Conclusions

B.7.  Changes since -07

   1.  Editorial changes made

B.8.  Changes since -06

   1.  Updated requirements for QOSM specification

   2.  Clarified the use of <Minimum QoS>

   3.  Added section about preemption

B.9.  Changes since -05

   1.  Included additional bit-level examples.

   2.  Updated section about interoperation with RSVP-CLS.

B.10.  Changes since -04

   1.  Adapted terminology and content to latest version of QSPEC (v17).
   E.g. removed QOSM ID, removed MTU,...

B.11.  Changes since -03

   1.  Adapted terminology and updated references.

B.12.  Changes since -02

   1.  Added "RSVP-style reservation" as running example

   2.  Updated interoperability section

   3.  Aligned QSPEC example in Appendix A with update of QSPEC draft
   and added more details




Kappler, et al.           Expires March 7, 2012                [Page 26]

Internet-Draft            Controlled-Load QOSM            September 2011


B.13.  Changes since -01

   1.  Clarifications about path MTU, scheduling/excess treatment and
   QOSM Hops.

   2.  Added a section "Interoperation with RFC2211" and QSPEC format as
   Appendix.


Appendix C.  Acknowledgements

   The authors would like to thank Andrew McDonald for fruitful
   discussions.  John Loughney, Bob Braden and Hannes Tschofenig
   provided helpful comments.


Authors' Addresses

   Cornelia Kappler
   ck technology concepts
   Berlin
   Germany

   Email: cornelia.kappler@cktecc.de


   Xiaoming Fu
   University of Goettingen
   Institute of Computer Science
   Goldschmidtstr. 7
   Goettingen  37077
   Germany

   Email: fu@cs.uni-goettingen.de


   Bernd Schloer
   University of Goettingen
   Institute of Computer Science
   Goldschmidtstr. 7
   Goettingen  37077
   Germany

   Email: bernd.schloer@yahoo.com







Kappler, et al.           Expires March 7, 2012                [Page 27]