Internet DRAFT - draft-mirsky-ippm-stamp-option-tlv
draft-mirsky-ippm-stamp-option-tlv
Network Working Group G. Mirsky
Internet-Draft X. Min
Intended status: Standards Track ZTE Corp.
Expires: January 7, 2020 G. Jun
ZTE Corporation
H. Nydell
Accedian Networks
R. Foote
Nokia
July 6, 2019
Simple Two-way Active Measurement Protocol Optional Extensions
draft-mirsky-ippm-stamp-option-tlv-05
Abstract
This document describes optional extensions to Simple Two-way Active
Measurement Protocol (STAMP) which enable measurement performance
metrics in addition to ones supported by the STAMP base
specification.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on January 7, 2020.
Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
Mirsky, et al. Expires January 7, 2020 [Page 1]
Internet-Draft STAMP Extensions July 2019
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Conventions used in this document . . . . . . . . . . . . . . 2
2.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 2
2.2. Requirements Language . . . . . . . . . . . . . . . . . . 3
3. Theory of Operation . . . . . . . . . . . . . . . . . . . . . 3
4. TLV Extensions to STAMP . . . . . . . . . . . . . . . . . . . 4
4.1. Extra Padding TLV . . . . . . . . . . . . . . . . . . . . 6
4.2. Location TLV . . . . . . . . . . . . . . . . . . . . . . 6
4.3. Timestamp Information TLV . . . . . . . . . . . . . . . . 8
4.4. Class of Service TLV . . . . . . . . . . . . . . . . . . 9
4.5. Direct Measurement TLV . . . . . . . . . . . . . . . . . 10
5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 11
5.1. STAMP TLV Registry . . . . . . . . . . . . . . . . . . . 11
5.2. Synchronization Source Sub-registry . . . . . . . . . . . 12
5.3. Timestamping Method Sub-registry . . . . . . . . . . . . 13
6. Security Considerations . . . . . . . . . . . . . . . . . . . 14
7. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 14
8. References . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.1. Normative References . . . . . . . . . . . . . . . . . . 14
8.2. Informative References . . . . . . . . . . . . . . . . . 15
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 15
1. Introduction
Simple Two-way Active Measurement Protocol (STAMP)
[I-D.ietf-ippm-stamp] supports the use of optional extensions that
use Type-Length-Value (TLV) encoding. Such extensions are to enhance
the STAMP base functions, such as measurement of one-way and round-
trip delay, latency, packet loss, as well as ability to detect packet
duplication and out-of-order delivery of the test packets. This
specification provides definitions of optional STAMP extensions,
their formats, and theory of operation.
2. Conventions used in this document
2.1. Terminology
STAMP - Simple Two-way Active Measurement Protocol
DSCP - Differentiated Services Code Point
Mirsky, et al. Expires January 7, 2020 [Page 2]
Internet-Draft STAMP Extensions July 2019
ECN - Explicit Congestion Notification
NTP - Network Time Protocol
PTP - Precision Time Protocol
HMAC Hashed Message Authentication Code
TLV Type-Length-Value
BITS Building Integrated Timing Supply
SSU Synchronization Supply Unit
GPS Global Positioning System
GLONASS Global Orbiting Navigation Satellite System
LORAN-C Long Range Navigation System Version C
MBZ Must Be Zeroed
CoS Class of Service
2.2. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
3. Theory of Operation
STAMP Session-Sender transmits test packets to STAMP Session-
Reflector. STAMP Session-Reflector receives Session-Sender's packet
and acts according to the configuration and optional control
information communicated in the Session-Sender's test packet. STAMP
defines two different test packet formats, one for packets
transmitted by the STAMP-Session-Sender and one for packets
transmitted by the STAMP-Session-Reflector. STAMP supports two
modes: unauthenticated and authenticated. Unauthenticated STAMP test
packets are compatible on the wire with unauthenticated TWAMP-Test
[RFC5357] packet formats.
By default, STAMP uses symmetrical packets, i.e., the size of the
packet transmitted by Session-Reflector equals the size of the packet
received by the Session-Reflector.
Mirsky, et al. Expires January 7, 2020 [Page 3]
Internet-Draft STAMP Extensions July 2019
4. TLV Extensions to STAMP
Figure 1 displays the format of STAMP Session-Sender test packet in
unauthenticated mode that includes a TLV.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Error Estimate | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| |
| |
| MBZ (30 octets) |
| |
| |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Value ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: STAMP Session-Sender test packet format with TLV in
unauthenticated mode
The MBZ (Must Be Zeroed) field of a test packet transmitted by a
STAMP Session-Sender MUST be 30 octets long. A STAMP Session-Sender
test packet MUST NOT use the Reflect Octets capability defined in
[RFC6038].
TLVs (Type-Length-Value tuples) have the two octets long Type field,
two octets long Length field that is the length of the Value field in
octets. Type values, see Section 5.1, less than 32768 identify
mandatory TLVs that MUST be supported by an implementation. Type
values greater than or equal to 32768 identify optional TLVs that
SHOULD be ignored if the implementation does not understand or
support them. If a Type value for TLV or sub-TLV is in the range for
Vendor Private Use, the Length MUST be at least 4, and the first four
octets MUST be that vendor's the Structure of Management Information
(SMI) Private Enterprise Number, in network octet order. The rest of
the Value field is private to the vendor. Following sections
Mirsky, et al. Expires January 7, 2020 [Page 4]
Internet-Draft STAMP Extensions July 2019
describe the use of TLVs for STAMP that extend STAMP capability
beyond its base specification.
Figure 2 displays the format of STAMP Session-Reflector test packet
in unauthenticated mode that includes a TLV.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Error Estimate | MBZ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Receive Timestamp |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Session-Sender Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Session-Sender Timestamp |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Session-Sender Error Estimate | MBZ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Ses-Sender TTL | MBZ2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Value ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: STAMP Session-Reflector test packet format with TLV in
unauthenticated mode
The MBZ2 field of a test packet transmitted by a STAMP Session-
Reflector MUST be 3 octets long.
A STAMP node, whether Session-Sender or Session-Reflector, receiving
a test packet MUST determine whether the packet is a base STAMP
packet or includes one or more TLVs. The node MUST compare the value
in the Length field of the UDP header and the length of the base
STAMP test packet in the mode, unauthenticated or authenticated based
on the configuration of the particular STAMP test session. If the
difference between the two values is larger than the length of UDP
header, then the test packet includes one or more STAMP TLVs that
immediately follow the base STAMP test packet.
Mirsky, et al. Expires January 7, 2020 [Page 5]
Internet-Draft STAMP Extensions July 2019
4.1. Extra Padding TLV
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Extra Padding Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ Extra Padding ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Extra Padding TLV
where fields are defined as the following:
o Extra Padding Type - TBA1 allocated by IANA Section 5.1
o Length - 2 octets long field equals length on the Extra Padding
field in octets.
o Extra Padding - a pseudo-random sequence of numbers. The field
MAY be filled with all zeroes.
The Extra Padding TLV is similar to the Packet Padding field in
TWAMP-Test packet [RFC5357]. The in STAMP the Packet Padding field
is used to ensure symmetrical size between Session-Sender and
Session-Reflector test packets. Extra Padding TLV MUST be used to
create STAMP test packets of larger size.
4.2. Location TLV
STAMP session-sender MAY include the Location TLV to request
information from the session-reflector. The session-sender SHOULD
NOT fill any information fields except for Type and Length. The
session-reflector MUST validate the Length value against the address
family of the transport encapsulating the STAMP test packet. If the
value of the Length field is invalid, the session-reflector MUST zero
all fields and MUST NOT return any information to the session-sender.
The session-reflector MUST ignore all other fields of the received
Location TLV.
Mirsky, et al. Expires January 7, 2020 [Page 6]
Internet-Draft STAMP Extensions July 2019
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Location Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source MAC |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Reserved A |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Destination IP Address ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Source IP Address ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Dest.port | Src.Port | Reserved B |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: Session-Reflector Location TLV
where fields are defined as the following:
o Location Type - TBA2 allocated by IANA Section 5.1
o Length - 2 octets long field equals length on the Value field in
octets. Length field value MUST be 20 octets for the IPv4 address
family. For the IPv6 address family value of the Length field
MUST be 44 octets. All other values are invalid.
o Source MAC - 6 octets 48 bits long field. The session-reflector
MUST copy Source MAC of received STAMP packet into this field.
o Reserved A - two octets long field. MUST be zeroed on
transmission and ignored on reception.
o Destination IP Address - IPv4 or IPv6 destination address of the
received by the session-reflector STAMP packet.
o Source IP Address - IPv4 or IPv6 source address of the received by
the session-reflector STAMP packet.
o Dest.port - one octet long UDP destination port number of the
received STAMP packet.
o Src.port - one octet long UDP source port number of the received
STAMP packet.
o Reserved B - two octets long field. MUST be zeroed on
transmission and ignored on reception.
Mirsky, et al. Expires January 7, 2020 [Page 7]
Internet-Draft STAMP Extensions July 2019
The Location TLV MAY be used to determine the last-hop addressing for
STAMP packets including source and destination IP addresses as well
as the MAC address of the last-hop router. Last-hop MAC address MAY
be monitored by the Session-Sender whether there has been a path
switch on the last hop, closest to the Session-Reflector. The IP
addresses and UDP port will indicate if there is a NAT router on the
path, and allows the Session-Sender to identify the IP address of the
Session-Reflector behind the NAT, detect changes in the NAT mapping
that could cause sending the STAMP packets to the wrong Session-
Reflector.
4.3. Timestamp Information TLV
STAMP session-sender MAY include the Timestamp Information TLV to
request information from the session-reflector. The session-sender
SHOULD NOT fill any information fields except for Type and Length.
The session-reflector MUST validate the Length value of the STAMP
test packet. If the value of the Length field is invalid, the
session-reflector MUST zero all fields and MUST NOT return any
information to the session-sender.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp Information Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sync. Src In | Timestamp In | Sync. Src Out | Timestamp Out |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: Timestamp Information TLV
where fields are defined as the following:
o Timestamp Information Type - TBA3 allocated by IANA Section 5.1
o Length - 2 octets long field, equals four octets.
o Sync Src In - one octet long field that characterizes the source
of clock synchronization at the ingress of Session-Reflector.
There are several of methods to synchronize the clock, e.g.,
Network Time Protocol (NTP) [RFC5905], Precision Time Protocol
(PTP) [IEEE.1588.2008], Synchronization Supply Unit (SSU) or
Building Integrated Timing Supply (BITS), or Global Positioning
System (GPS), Global Orbiting Navigation Satellite System
(GLONASS) and Long Range Navigation System Version C (LORAN-C).
The value is one of Section 5.2.
Mirsky, et al. Expires January 7, 2020 [Page 8]
Internet-Draft STAMP Extensions July 2019
o Timestamp In - one octet long field that characterizes the method
by which the ingress of Session-Reflector obtained the timestamp
T2. A timestamp may be obtained with hardware assist, via
software API from a local wall clock, or from a remote clock (the
latter referred to as "control plane"). The value is one of
Section 5.3.
o Sync Src Out - one octet long field that characterizes the source
of clock synchronization at the egress of Session-Reflector. The
value is one of Section 5.2.
o Timestamp Out - one octet long field that characterizes the method
by which the egress of Session-Reflector obtained the timestamp
T3. The value is one of Section 5.3.
4.4. Class of Service TLV
The STAMP session-sender MAY include Class of Service (CoS) TLV in
the STAMP test packet. If the CoS TLV is present in the STAMP test
packet and the value of the DSCP1 field is zero, then the STAMP
session-reflector MUST copy the values of Differentiated Services
Code Point (DSCP) ECN fields from the received STAMP test packet into
DSCP2 and ECN fields respectively of the CoS TLV of the reflected
STAMP test packet. If the value of the DSCP1 field is non-zero, then
the STAMP session-reflector MUST use DSCP1 value from the CoS TLV in
the received STAMP test packet as DSCP value of STAMP reflected test
packet and MUST copy DSCP and ECN values of the received STAMP test
packet into DSCP2 and ECN fields of Class of Service TLV in the STAMP
reflected a packet. The Session-Sender, upon receiving the reflected
packet, will save the DSCP and ECN values for analysis of the CoS in
the reverse direction.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Class of Service Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| DSCP1 | DSCP2 |ECN| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: Class of Service TLV
where fields are defined as the following:
o Class of Service Type - TBA4 allocated by IANA Section 5.1
o Length - 2 octets long field, equals four octets.
Mirsky, et al. Expires January 7, 2020 [Page 9]
Internet-Draft STAMP Extensions July 2019
o DSCP1 - The Differentiated Services Code Point (DSCP) intended by
the Session-Sender. To be used as the return DSCP from the
Session-Reflector.
o DSCP2 - The received value in the DSCP field at the Session-
Reflector in the forward direction.
o ECN - The received value in the ECN field at the Session-Reflector
in the forward direction.
o Reserved - 18 bits long field, must be zeroed in transmission and
ignored on receipt.
A STAMP Session-Sender that includes the CoS TLV sets the value of
the DSCP1 field and zeroes the value of the DSCP2 field. A STAMP
Session-Reflector that received the test packet with the CoS TLV MUST
include the CoS TLV in the reflected test packet. Also, the Session-
Reflector MUST copy the value of the DSCP field of the IP header of
the received STAMP test packet into the DSCP2 field in the reflected
test packet. And, at last, the Session-Reflector MUST set the value
of the DSCP field in the IP header of the reflected test packet equal
to the value of the DSCP1 field of the test packet it has received.
Re-mapping of CoS in some use cases, for example, in mobile backhaul
networks is used to provide multiple services, i.e., 2G, 3G, LTE,
over the same network. But if it is misconfigured, then it is often
difficult to diagnose the root cause of the problem that is viewed as
an excessive packet drop of higher level service while packet drop
for lower service packets is at a normal level. Using CoS TLV in
STAMP test helps to troubleshoot the existing problem and also verify
whether DiffServ policies are processing CoS as required by the
configuration.
4.5. Direct Measurement TLV
The Direct Measurement TLV enables collection of "in profile" IP
packets that had been transmitted and received by the Session-Sender
and Session-Reflector respectfully. The definition of "in-profile
packet" is outside the scope of this document.
Mirsky, et al. Expires January 7, 2020 [Page 10]
Internet-Draft STAMP Extensions July 2019
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Direct Measurement Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Session-Sender Tx counter (S_TxC) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Session-Reflector Rx counter (R_RxC) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Session-Reflector Tx counter (R_TxC) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: Direct Measurement TLV
where fields are defined as the following:
o Direct Measurement Type - TBA5 allocated by IANA Section 5.1
o Length - 2 octets long field equals length on the Value field in
octets. Length field value MUST be 12 octets.
o Session-Sender Tx counter (S_TxC) is four octets long field.
o Session-Reflector Rx counter (R_RxC) is four octets long field.
MUST be zeroed by the Session-Sender and filled by the Session-
Reflector.
o Session-Reflector Tx counter (R_TxC) is four octets long field.
MUST be zeroed by the Session-Sender and filled by the Session-
Reflector.
5. IANA Considerations
5.1. STAMP TLV Registry
IANA is requested to create the STAMP TLV Type registry. All code
points in the range 1 through 32759 in this registry shall be
allocated according to the "IETF Review" procedure as specified in
[RFC8126]. Code points in the range 32760 through 65279 in this
registry shall be allocated according to the "First Come First
Served" procedure as specified in [RFC8126]. Remaining code points
are allocated according to Table 1:
Mirsky, et al. Expires January 7, 2020 [Page 11]
Internet-Draft STAMP Extensions July 2019
+---------------+-------------------------+-------------------------+
| Value | Description | Reference |
+---------------+-------------------------+-------------------------+
| 0 | Reserved | This document |
| 1- 32767 | Mandatory TLV, | IETF Review |
| | unassigned | |
| 32768 - 65279 | Optional TLV, | First Come First Served |
| | unassigned | |
| 65280 - 65519 | Experimental | This document |
| 65520 - 65534 | Private Use | This document |
| 65535 | Reserved | This document |
+---------------+-------------------------+-------------------------+
Table 1: STAMP TLV Type Registry
This document defines the following new values in STAMP TLV Type
registry:
+-------+-----------------------+---------------+
| Value | Description | Reference |
+-------+-----------------------+---------------+
| TBA1 | Extra Padding | This document |
| TBA2 | Location | This document |
| TBA3 | Timestamp Information | This document |
| TBA4 | Class of Service | This document |
| TBA5 | Direct Measurement | This document |
+-------+-----------------------+---------------+
Table 2: STAMP Types
5.2. Synchronization Source Sub-registry
IANA is requested to create Synchronization Source sub-registry as
part of STAMP TLV Type registry. All code points in the range 1
through 127 in this registry shall be allocated according to the
"IETF Review" procedure as specified in [RFC8126]. Code points in
the range 128 through 239 in this registry shall be allocated
according to the "First Come First Served" procedure as specified in
[RFC8126]. Remaining code points are allocated according to Table 1:
Mirsky, et al. Expires January 7, 2020 [Page 12]
Internet-Draft STAMP Extensions July 2019
+-----------+--------------+-------------------------+
| Value | Description | Reference |
+-----------+--------------+-------------------------+
| 0 | Reserved | This document |
| 1- 127 | Unassigned | IETF Review |
| 128 - 239 | Unassigned | First Come First Served |
| 240 - 249 | Experimental | This document |
| 250 - 254 | Private Use | This document |
| 255 | Reserved | This document |
+-----------+--------------+-------------------------+
Table 3: Synchronization Source Sub-registry
This document defines the following new values in Synchronization
Source sub-registry:
+-------+---------------------+---------------+
| Value | Description | Reference |
+-------+---------------------+---------------+
| 1 | NTP | This document |
| 2 | PTP | This document |
| 3 | SSU/BITS | This document |
| 4 | GPS/GLONASS/LORAN-C | This document |
| 5 | Local free-running | This document |
+-------+---------------------+---------------+
Table 4: Synchronization Sources
5.3. Timestamping Method Sub-registry
IANA is requested to create Timestamping Method sub-registry as part
of STAMP TLV Type registry. All code points in the range 1 through
127 in this registry shall be allocated according to the "IETF
Review" procedure as specified in [RFC8126]. Code points in the
range 128 through 239 in this registry shall be allocated according
to the "First Come First Served" procedure as specified in [RFC8126].
Remaining code points are allocated according to Table 1:
Mirsky, et al. Expires January 7, 2020 [Page 13]
Internet-Draft STAMP Extensions July 2019
+-----------+--------------+-------------------------+
| Value | Description | Reference |
+-----------+--------------+-------------------------+
| 0 | Reserved | This document |
| 1- 127 | Unassigned | IETF Review |
| 128 - 239 | Unassigned | First Come First Served |
| 240 - 249 | Experimental | This document |
| 250 - 254 | Private Use | This document |
| 255 | Reserved | This document |
+-----------+--------------+-------------------------+
Table 5: Timestamping Method Sub-registry
This document defines the following new values in Timestamping
Methods sub-registry:
+-------+---------------+---------------+
| Value | Description | Reference |
+-------+---------------+---------------+
| 1 | HW assist | This document |
| 2 | SW local | This document |
| 3 | Control plane | This document |
+-------+---------------+---------------+
Table 6: Timestamping Methods
6. Security Considerations
Use of HMAC in authenticated mode may be used to simultaneously
verify both the data integrity and the authentication of the STAMP
test packets.
7. Acknowledgments
Authors much appreciate the thorough review and thoughful comments
received from Tianran Zhou.
8. References
8.1. Normative References
[I-D.ietf-ippm-stamp]
Mirsky, G., Jun, G., Nydell, H., and R. Foote, "Simple
Two-way Active Measurement Protocol", draft-ietf-ippm-
stamp-06 (work in progress), April 2019.
Mirsky, et al. Expires January 7, 2020 [Page 14]
Internet-Draft STAMP Extensions July 2019
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC5357] Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J.
Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)",
RFC 5357, DOI 10.17487/RFC5357, October 2008,
<https://www.rfc-editor.org/info/rfc5357>.
[RFC6038] Morton, A. and L. Ciavattone, "Two-Way Active Measurement
Protocol (TWAMP) Reflect Octets and Symmetrical Size
Features", RFC 6038, DOI 10.17487/RFC6038, October 2010,
<https://www.rfc-editor.org/info/rfc6038>.
[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017,
<https://www.rfc-editor.org/info/rfc8126>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
8.2. Informative References
[IEEE.1588.2008]
"Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems",
IEEE Standard 1588, March 2008.
[RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
"Network Time Protocol Version 4: Protocol and Algorithms
Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
<https://www.rfc-editor.org/info/rfc5905>.
Authors' Addresses
Greg Mirsky
ZTE Corp.
Email: gregimirsky@gmail.com
Xiao Min
ZTE Corp.
Email: xiao.min2@zte.com.cn
Mirsky, et al. Expires January 7, 2020 [Page 15]
Internet-Draft STAMP Extensions July 2019
Guo Jun
ZTE Corporation
68# Zijinghua Road
Nanjing, Jiangsu 210012
P.R.China
Phone: +86 18105183663
Email: guo.jun2@zte.com.cn
Henrik Nydell
Accedian Networks
Email: hnydell@accedian.com
Richard Foote
Nokia
Email: footer.foote@nokia.com
Mirsky, et al. Expires January 7, 2020 [Page 16]