Internet DRAFT - draft-mishra-bess-ipv6-only-pe-design-all-safi
draft-mishra-bess-ipv6-only-pe-design-all-safi
BESS Working Group G. Mishra
Internet-Draft Verizon Inc.
Intended status: Standards Track M. Mishra
Expires: 28 January 2024 Cisco Systems
J. Tantsura
Microsoft, Inc.
S. Madhavi
Juniper Networks, Inc.
Q. Yang
Arista Networks
A. Simpson
Nokia
S. Chen
Huawei Technologies
27 July 2023
IPv6-Only PE Design All SAFI
draft-mishra-bess-ipv6-only-pe-design-all-safi-04
Abstract
As Enterprises and Service Providers upgrade their brown field or
green field MPLS/SR core to an IPv6 transport, Multiprotocol BGP (MP-
BGP)now plays an important role in the transition of their Provider
(P) core network as well as Provider Edge (PE) Inter-AS peering
network from IPv4 to IPv6. Operators must be able to continue to
support IPv4 customers when both the Core and Edge networks are
IPv6-Only.
This document details an important External BGP (eBGP) PE-PE Inter-AS
IPv6-Only peering design that leverages the MP-BGP capability
exchange by using IPv6 peering as pure transport, allowing all and
any IPv4 Network Layer Reachability Information (NLRI) and IPv6
Network Layer Reachability Information (NLRI)to be carried over the
same (Border Gateway Protocol) BGP TCP session for all Address Family
Identifiers (AFI) and Subsequent Address Family Identifiers(SAFI).
The design change provides the same Dual Stacking functionality that
exists today with separate IPv4 and IPv6 BGP sessions as we have
today. With this IPv6-Only PE Design, IPv4 address MUST not be
configured on the the Provider Edge (PE) - Customer Edge (CE), or
Inter-AS ASBR (Autonomous System Boundary Router) to ASBR (Autonomous
System Boundary Router) PE-PE Provider Edge (PE) - Provider Edge
(PE). From a control plane perspective a single IPv6-Only peer is
required for both IPv4 and IPv6 routing updates and from a data plane
forwarindg perspective an IPv6 address need only be configured on the
PE to PE Inter-AS peering interface for both IPv4 and IPv6 packet
forwarding. This document defines the IPv6-Only PE Design as a new
Mishra, et al. Expires 28 January 2024 [Page 1]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
PE-CE Edge and ASBR-ASBR PE-PE Inter-AS BGP peering Standard which is
described in the POC testing document
[I-D.ietf-bess-ipv6-only-pe-design] which is now extended to support
to all AFI/SAFI ubiquitously. As service providers migrate to
Segment Routing architecture SR-MPLS and SRv6, VPN overlay exsits as
well, and thus Inter-AS options Option-A, Option-B, Option-AB and
Option-C are still applicable and thus this extension of IPv6-Only
peering architecure extension to Inter-AS peering is very relevant to
Segment Routing as well.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 28 January 2024.
Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4
2. Requirements Language . . . . . . . . . . . . . . . . . . . . 6
3. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 7
4. Problem Statement . . . . . . . . . . . . . . . . . . . . . . 7
5. IPv6-Only PE-CE Design ALL SAFI Solution . . . . . . . . . . 8
Mishra, et al. Expires 28 January 2024 [Page 2]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
6. IPv6-Only Edge Peering Design ALL SAFI . . . . . . . . . . . 10
6.1. IPv6-Only Edge Peering Packet Walk ALL SAFI . . . . . . . 10
6.2. IPv6-Only PE Design ALL SAFI 6to4 Softwire IPv4-Only Core
packet walk . . . . . . . . . . . . . . . . . . . . . . . 11
6.3. IPv6-Only PE Design ALL SAFI 4to6 Softwire IPv6-Only Core
packet walk . . . . . . . . . . . . . . . . . . . . . . . 13
7. IPv6-Only PE Design ALL SAFI RFC8950 Applicability . . . . . 15
7.1. IPv6-Only Edge Peering design next-hop encoding . . . . . 15
7.2. RFC8950 updates to RFC5549 applicability . . . . . . . . 15
8. IPv6-Only PE Design Edge E2E Design for ALL AFI/SAFI . . . . 16
8.1. IPv6-Only PE Design All SAFI Case-1 E2E IPv6-Only PE-CE,
Global Table over IPv4-Only Core(6PE), 6to4 softwire . . 16
8.2. IPv6-Only PE Design All SAFI Case-2 E2E IPv6-Only PE-CE,
VPN over IPv4-Only Core, 6to4 Softwire . . . . . . . . . 17
8.3. IPv6-Only PE Design All SAFI Case-3 E2E IPv6-Only PE-CE,
Global Table over IPv6-Only Core (4PE), 4to6 Softwire . 17
8.4. IPv6-Only PE Design All SAFI Case-4 E2E IPv6-Only PE-CE,
VPN over IPv6-Only Core, 4to6 Softwire . . . . . . . . . 18
8.5. IPv6-Only PE Design All SAFI Case-5 E2E IPv6-Only PE-CE,
Global Table over IPv4-Only Core(6PE), 6to4 softwire
-Inter-AS Option-B . . . . . . . . . . . . . . . . . . . 18
8.6. IPv6-Only PE Design All SAFI Case-6 E2E IPv6-Only PE-CE,
Global Table over IPv4-Only Core(6PE), 6to4 softwire
-Inter-AS Option-C . . . . . . . . . . . . . . . . . . . 19
8.7. IPv6-Only PE Design All SAFI Case-7 E2E IPv6-Only PE-CE,
VPN over IPv4-Only, 6to4 softwire -Inter-AS Option-B . . 19
8.8. IPv6-Only PE Design All SAFI Case-8 E2E IPv6-Only PE-CE,
VPN over IPv4-Only Core, 6to4 softwire -Inter-AS
Option-C . . . . . . . . . . . . . . . . . . . . . . . . 20
8.9. IPv6-Only PE Design All SAFI Case-9 E2E IPv6-Only PE-CE,
Global Table over IPv6-Only Core, 4to6 softwire -Inter-AS
Option-B . . . . . . . . . . . . . . . . . . . . . . . . 20
8.10. IPv6-Only PE Design All SAFI Case-10 E2E IPv6-Only PE-CE,
Global Table over IPv6-Only Core, 4to6 softwire -Inter-AS
Option-C . . . . . . . . . . . . . . . . . . . . . . . . 21
8.11. IPv6-Only PE Design All SAFI Case-4 E2E IPv6-Only PE-CE,
VPN over IPv6-Only Core, 4to6 softwire -Inter-AS
Option-B . . . . . . . . . . . . . . . . . . . . . . . . 21
8.12. IPv6-Only PE Design All SAFI Case-12 E2E IPv6-Only PE-CE,
VPN over IPv6-Only Core, 4to6 softwire -Inter-AS
Option-C . . . . . . . . . . . . . . . . . . . . . . . . 22
9. IPv6-Only PE Design ALL AFI/SFI Operational Considerations . 22
10. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 23
11. Security Considerations . . . . . . . . . . . . . . . . . . . 24
12. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 24
13. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 24
14. References . . . . . . . . . . . . . . . . . . . . . . . . . 24
14.1. Normative References . . . . . . . . . . . . . . . . . . 24
Mishra, et al. Expires 28 January 2024 [Page 3]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
14.2. Informative References . . . . . . . . . . . . . . . . . 28
Appendix A. SAFI LIST FOR PE-CE Edge Scenario . . . . . . . . . 29
Appendix B. SAFI LIST FOR Inter-AS PE-PE Scenario . . . . . . . 30
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 32
1. Introduction
As Enterprises and Service Providers upgrade their brown field or
green field MPLS/SR core to an IPv6 transport such as MPLS LDPv6, SR-
MPLSv6 or SRv6, Multiprotocol BGP (MP-BGP) now plays an important
role in the transition of the Provider (P) core networks and Provider
Edge (PE) edge networks from IPv4 to IPv6. Operators have a
requirement to support IPv4 customers and must be able to support
IPv4 address family and Sub-Address-Family Virtual Private Network
(VPN)-IPv4, and Multicast VPN IPv4 customers.
IXP are also facing IPv4 address depletion at their peering points,
which are large Layer 2 transit backbones that service providers peer
and exchange IPv4 and IPv6 Network Layer Reachability Information
(NLRI). Today, these transit exchange points are Dual Stacked. With
this IPv6-only BGP peering design, only IPv6 MUST be configured on
the PE-PE inter-as peering interface, the Inter-AS Provider Edge (PE)
- Provider Edge (PE), the IPv6 BGP peer is now used to carry IPv4
(Network Layer Reachability Information) NLRI over an IPv6 next hop
using IPv6 next hop encoding defined in [RFC8950], while continuing
to forward both IPv4 and IPv6 packets. With this IPv6-Only PE
Design, ASBRs providing Inter-AS options peering PE to PE extending
L3 VPN services is now no longer Dual Stacked and as well can support
ALL AFI/SAFI.
MP-BGP specifies that the set of usable next-hop address families is
determined by the Address Family Identifier (AFI) and the Subsequent
Address Family Identifier (SAFI). Historically the AFI/SAFI
definitions for the IPv4 address family only have provisions for
advertising a Next Hop address that belongs to the IPv4 protocol when
advertising IPv4 or VPN-IPv4. [RFC8950] specifies the extensions
necessary to allow advertising IPv4 NLRI, Virtual Private Network
Unicast (VPN-IPv4) NLRI, Multicast Virtual Private Network (MVPN-
IPv4) NLRI with a Next Hop address that belongs to the IPv6 protocol.
This comprises of an extended next hop encoding MP-REACH BGP
capability exchange to allow the address of the Next Hop for IPv4
NLRI, VPN-IPv4 NLRI and MVPN-IPv4 NLRI to also belong to the IPv6
Protocol. [RFC8950] defines the encoding of the Next Hop to
determine which of the protocols the address actually belongs to, and
a new BGP Capability allowing MP-BGP Peers to discover dynamically
whether they can exchange IPv4 NLRI and VPN-IPv4 NLRI with an IPv6
Next Hop.
Mishra, et al. Expires 28 January 2024 [Page 4]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
The current specification for carrying IPv4 NLRI of a given address
family via a Next Hop of a different address family is now defined in
[RFC8950], and specifies the extended next hop encoding MP-REACH
capability extension necessary to do so. This comprises an extension
of the AFI/SAFI definitions to allow the address of the Next Hop for
IPv4 NLRI or VPN-IPv4 NLRI to belong to either the IPv4 or the IPv6
protocol, the encoding of the Next Hop information to determine which
of the protocols the address belongs to, and a new BGP Capability
allowing MP-BGP peers to dynamically discover whether they can
exchange IPv4 NLRI and VPN- IPv4 NLRI with an IPv6 Next Hop.
With the new extensions defined in [RFC8950] supporting NLRI and next
hop address family mismatch, the BGP peer session can now be treated
as a pure TCP transport and carry both IPv4 and IPv6 NLRI at the
Provider Edge (PE) - Customer Edge (CE) over a single IPv6 TCP
session. This allows for the elimination of dual stack from the PE-
PE Inter-AS peering point, and now enable the Inter-AS peering to be
IPv6-ONLY. The elimination of IPv4 Inter Provider ASBR tie point,
PE-PE Inter-AS peering points translates into OPEX expenditure
savings of point-to-point infrastructure links as well as /31 address
space savings and administration and network management of both IPv4
and IPv6 BGP peers. This reduction decreases the number of PE-PE
Inter-AS options BGP peers by fifty percent, which is a tremendous
cost savings for operators.
While the savings exists at the Edge eBGP PE-PE Inter-AS peering, on
the core side PE to Route Reflector (RR) peering carrying <AFI/SAFI>
IPv4 <1/1>, VPN-IPV4 <1/128>, and Multicasat VPN <1/129>, there is no
savings as the Provider (P) Core is IPv6 Only and thus can only have
an IPv6 peer and must use [RFC8950] extended next hop encoding to
carrying IPv4 NLRI IPV4 <2/1>, VPN-IPV4 <2/128>, and Multicast VPN
<2/129> over an IPv6 next hop.
This document defines the IPv6-Only PE Design Architecture details
for External BGP (eBGP) PE-PE Inter-AS IPv6-Only peering design that
leverages the MP-BGP capability exchange by using IPv6 peering as
pure transport, allowing all and any IPv4 Network Layer Reachability
Information (NLRI) and IPv6 Network Layer Reachability Information
(NLRI)to be carried over the same (Border Gateway Protocol) BGP TCP
session for all Address Family Identifiers (AFI) and Subsequent
Address Family Identifiers(SAFI). The design change provides the
same Dual Stacking functionality that exists today with separate IPv4
and IPv6 BGP sessions as we have today. With this IPv6-Only PE
Design, IPv4 address MUST not be configured on the the Provider Edge
(PE) - Customer Edge (CE), or Inter-AS ASBR (Autonomous System
Boundary Router) to ASBR (Autonomous System Boundary Router) PE-PE
Provider Edge (PE) - Provider Edge (PE). From a control plane
perspective a single IPv6-Only peer MUST be configured for both IPv4
Mishra, et al. Expires 28 January 2024 [Page 5]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
and IPv6 routing updates, and from a data plane forwarindg
perspective only an IPv6 address MUST be configured on the PE-CE Edge
or ASBR-ASBR, PE to PE Inter-AS peering interface for both IPv4 and
IPv6 packet forwarding for all AFI/SAFI. This document defines the
IPv6-Only PE Design as a new Intra-AS PE-CE Edge and Inter-AS PE-PE
BGP peering Standard which is described in the POC testing document
in detail, [I-D.ietf-bess-ipv6-only-pe-design] which is now extended
for applicability to to all AFI/SAFI ubiquitously. As service
providers migrate to Segment Routing architecture SR-MPLS and SRv6,
VPN overlay exsits as well, and thus Inter-AS options Option-A,
Option-AB and Option-C are still applicable and thus this extension
of IPv6-Only peering architecure extension to Inter-AS peering is
very relevant to Segment Routing as well as well as any other
applicable AFI/SAFI is now as well relevant.
This IPv6-Only PE ALL SAFI Design details an important External BGP
(eBGP) PE-PE Inter-AS IPv6-Only peering design that leverages the MP-
BGP capability exchange by using IPv6 peering as pure transport,
allowing all and any IPv4 Network Layer Reachability Information
(NLRI) and IPv6 Network Layer Reachability Information (NLRI) to be
carried over the same (Border Gateway Protocol) BGP TCP session for
all remaining Address Family Identifiers (AFI) and Subsequent Address
Family Identifiers(SAFI) below as well that can be carried over
IPv6-Only Inter-AS peerings: <AFI/SAFI> MCAST-VPN [RFC6514] <1/5>,
NLRI Multi-Segment Pseudowires [RFC7267] <1/6>, BGP Tunnel
Encapsulation SAFI [RFC9012] <1/7>, MCAST-VPLS [RFC7117] <1/8>,
Tunnel SAFI [I-D.nalawade-kapoor-tunnel-safi] <1/6>, BGP MDT SAFI
[RFC6037] <1/66>, BGP 4to6 SAFI [RFC5747] <1/67>, BGP 6to4 SAFI draft
xx <1/8>, Layer 1 VPN Auto-Discovery [RFC5195] <1/69>, SR-TE Policy
SAFI draft <1/73>, BGP 6to4 SAFI draft <1/8>, SDN WAN Capabilities
draft <1/74>, Classful-Transport SAFI draftxx <1/76>, Tunneled
Traffic FlowSpec draftxx <1/77>, MCAST-TREE SAFI draft xx <1/78>,
Route Target Constraints [RFC4684] <1/132>, Dissemination of Flow
Specification Rules [RFC8955] <1/133>, L3 VPN Dissemination of Flow
Specification Rules [RFC8955] <1/1344>, VPN Auto-Discovery SAFI
draftxx <1/140>
2. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
Mishra, et al. Expires 28 January 2024 [Page 6]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
3. Terminology
Terminolgoy used in defining the IPv6-Only Edge specification.
AFBR: Address Family Border Router Provider Edge (PE).
Edge: PE-CE Edge Network Provider Edge - Customer Edge
Core: P Core Network Provider (P)
4to6 Softwire : IPv4 edge over an IPv6-Only core
6to4 Softwire: IPv6 edge over an IPv4-Only core
E2E: End to End
4. Problem Statement
This specification addresses a real issue that has been discussed at
many operator with extremely large core networks around the world
related migration to IPv6 underlay transport which can be put off
indefinitely. Operators around the world are clamoring for a
solution that can help solve issues related to IPv4 address depletion
at these large IXP peering points. With this solution,
infrastructure networks such as Core networks, DC networks, Access
networks as well as any PE-CE public or private network can now
utilize this IPv4-Only Edge solution and reap the benefits
immediately on IPv6 address space saving and CAPEX and OPEX savings.
Problem Statement
Dual Stacked Dual Stacked
CE PE
+-------+ IPv4 BGP Peer +-------+
| |---------------| |
| CE | IPv6 BGP Peer | PE |
| |---------------| |
+-------+ +-------+
IPv4 forwarding IPv4 forwarding
IPv6 forwarding IPv6 forwarding
Figure 1: Problem Statement - Dual Stack Peering
Mishra, et al. Expires 28 January 2024 [Page 7]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
________
Dual Stacked _____ / \ Dual Stacked
PE / CE / \__/ \___ PE / CE
+----+ +----+ / \ +------+ +-----+
| | | | |0====VPN Overlay Tunnel ==0| | | | |
| | | | | \ | | | |
| CE |--| PE |--\ IPv6-Only Core |----| PE |---| CE |
| | | | \0=========Underlay =======0| | | | |
+----+ +----+ \ __/ +------+ +-----+
IPv4 IPv6 BGP peer \ IP / MPLS / SR domain / IPv4 and IPv6 BGP peer
IPv4 forwarding \__ __ / IPv4 forwarding
IPv6 forwarding \_______/ \_____/ IPv6 forwarding
Figure 2: Problem Statement - E2E Dual Stack Edge
5. IPv6-Only PE-CE Design ALL SAFI Solution
The IPv6-Only Edge design solution applies to any and all IPv4
Network Layer Reachability Information (NLRI) and IPv6 Network Layer
Reachability Information (NLRI) over an IPv6-Only BGP Peering
session.
2 Main scenario groupings for the IPv6-Only PE Design ALL SAFI
* Group-1 PE-CE
* Group-2 PE-PE Inter-AS
1. Group-1 Edge Customer IPv4/IPv6 NLRI PE-CE AFI / SAFI grouping
(CP-DP)
1. Unicast
* AFI/SAFI 1/1 IPv4 Unicast 2/1 IPv6 Unicast
1. Multicast
* AFI/SAFI 1/2 IPv4 Multicast 2/2 IPv6 Multicast
* AFI/SAFI 1/78 IPv4 MCAST-TREE SAFI 2/78 MCAST-TREE SAFI
1. Group-2 ASBR-ASBR Inter AS Customer IPv4/IPv6 NLRI AFI/SAFI
grouping (CP-DP)
a. Unicast
Mishra, et al. Expires 28 January 2024 [Page 8]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
1. Global Table
* AFI/SAFI 1/4 4PE
1. L3 VPN
* AFI/SAFI 1/128 IPv4 VPN 2/128 IPv6 VPN
* AFI/SAFI 1/132 IPv4 RTC 2/132 IPv6 RTC
* AFI/SAFI 1/140 IPv4 VPN Auto Discovery 2/140 IPv6 VPN Auto
Discovery
a. Multicast
1. Global Table
* AFI/SAFI 1/2 IPv4 Multicast 2/2 IPv6 Multicast
1. L3 VPN
* AFI/SAFI 1/129 IPv4 MVPN 2/129 IPv6 MVPN
* AFI/SAFI 1/5 IPv4 MCAST-VPN 2/5 IPv6 MCAST-VPN
* AFI/SAFI 1/66 IPv4 BGP MDT SAFI 2/66 IPv6 BGP MDT SAFI
* AFI/SAFI 1/78 IPv4 MCAST-TREE SAFI 2/78 MCAST-TREE SAFI
1. L1 and L2 VPN
* L2 VPN related NLRI control plane in BGP
* AFI/SAFI 1/6 IPv4 Multi Segment PW 2/6 IPv6 Multi Segment PW
* AFI/SAFI 1/69 L1 VPN Auto Discovery 2/69 L1 VPN Auto Discovery
1. Multicast
* AFI/SAFI 1/8 IPv4 MCAST-VPLS 2/8 IPv6 MCAST-VPLS
1. Tunnel
* AFI/SAFI 1/64 Tunnel-SAFI 2/64 Tunnel-SAFI
* AFI/SAFI 1/67 BGP 4over6 Tunnel SAFI 2/67 BGP 4over6 Tunnel SAFI
* AFI/SAFI 1/68 BGP 6over4 Tunnel SAFI 2/68 BGP 6over4 Tunnel SAFI
Mishra, et al. Expires 28 January 2024 [Page 9]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
1. BGP Policy and Flowspec Policy and Misc Policy
* AFI/SAFI 1/73 SR-TE Policy SAFI 2/73 SR-TE Policy SAFI
* AFI/SAFI 1/74 SD-WAN Capabilities 2/74 SD-WAN Capabilities
* AFI/SAFI 1/77 Tunneled Traffic Flowspec 2/77 Tunneled Traffic
Flowspec
* AFI/SAFI 1/133 Dissemination of Flowspec Rules 2/133 133
Dissemination of Flowspec Rules
* AFI/SAFI 1/134 L3 VPN 133 Dissemination of Flowspec Rules 2/134
L3VPN Dissemination of Flowspec Rules
* AFI/SAFI 1/79 BGP-DPS Arista 2/79 BGP-DPS Arista
* AFI/SAFI 1/83 BGP CAR 2/83 BGP CAR
* AFI/SAFI 1/84 BGP VPN CAR 2/84 BGP VPN CAR
* AFI/SAFI 1/85 BGP MUP SAFI 2/85 BGP MUP SAFI
Solution applicable to all AFI/SAFI
AFI/SAFI 1/X 2/X Where X = ALL SAFI
+-------+ +-------+
| AS1 | IPv6 Only | AS2 |
| PE1 |----------------| PE2 |
| (ASBR)| IPv6 BGP Peer |(ASBR) |
+-------+ +-------+
IPv4 forwarding IPv4 forwarding
IPv6 forwarding IPv6 forwarding
Figure 3: IPv6-Only PE Design Solution Applicability to ALL AFI/SAFI
6. IPv6-Only Edge Peering Design ALL SAFI
6.1. IPv6-Only Edge Peering Packet Walk ALL SAFI
The IPv6-Only Edge Peering design utilizes two key E2E Softwire Mesh
Framework scenario's, 4to6 softwire and 6to4 softwire. The Softwire
mesh framework concept is based on the overlay and underlay MPLS or
SR based technology framework, where the underlay is the transport
layer and the overlay is a Virtual Private Network (VPN) layer, and
is the the tunneled virtualization layer containing the customer
Mishra, et al. Expires 28 January 2024 [Page 10]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
payload. The concept of a 6to4 Softwire is based on transmission of
IPv6 packets at the edge of the network by tunneling the IPv6 packets
over an IPv4-Only Core. The concept of a 4to6 Softwire is also based
on transmission of IPv4 packets at the edge of the network by
tunneling the IPv4 packets over an IPv6-Only Core.
This document describes End to End (E2E) test scenarios that follow a
packet flow from IPv6-Only attachment circuit from ingress PE-CE to
egress PE-CE tracing the routing protocol control plane and data
plane forwarding of IPv4 packets in a 4to6 softwire or 6to4 softwire
within the IPv4-Only or IPv6-Only Core network. In both secneario we
are focusing on IPv4 packets and the control plane and data plane
forwarding aspects of IPv4 packets from the PE-CE Edge network over
an IPv6-Only P (Provider) core network or IPv4-Only P (Provider) core
network. With this IPv6-Only Edge peering design, the Softwire Mesh
Framework is not extended beyond the Provider Edge (PE) and continues
to terminate on the PE router.
6.2. IPv6-Only PE Design ALL SAFI 6to4 Softwire IPv4-Only Core packet
walk
6to4 softwire where IPv6-Edge eBGP IPv6 peering where IPv4 packets at
network Edge traverse a IPv4-Only Core
In the scenario where IPv4 packets originating from a PE-CE edge are
tunneled over an MPLS or Segment Routing IPv4 underlay core network,
the PE and CE only have an IPv6 address configured on the interface.
In this scenario the IPv4 packets that ingress the CE from within the
CE AS are over an IPv6-Only interface and are forwarded to an IPv4
NLRI destination prefix learned from the Pure Transport Single IPv6
BGP Peer. In the IPv6-Only Edge peering architecture the PE is
IPv6-Only as all PE-CE interfaces are IPv6-Only. However, on the CE,
the PE-CE interface is the only interface that is IPv6-Only and all
other interfaces may or may not be IPv6-Only. Following the data
plane packet flow, IPv4 packets are forwarded from the ingress CE to
the IPv6-Only ingress PE where the VPN label imposition push per
prefix, per-vrf, per-CE occurs and the labeled packet is forwarded
over a 6to4 softwire IPv4-Only core, to the egress PE where the VPN
label disposition pop occurs and the native IPv4 packet is forwarded
to the egress CE. In the reverse direction IPv4 packets are
forwarded from the egress CE to egress PE where the VPN label
imposition per prefix, per-vrf, per-CE push occurs and the labeled
packet is forwarded back over the 6to4 softwire IPv4-Only core, to
the ingress PE where the VPN label disposition pop occurs and the
native IPv4 packet is forwarded to the ingress CE. . The
functionality of the IPv4 forwarding plane in this scenario is
identical from a data plane forwarding perspective to Dual Stack IPv4
forwarding scenario.
Mishra, et al. Expires 28 January 2024 [Page 11]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
+--------+ +--------+
| IPv4 | | IPv4 |
| Client | | Client |
| Network| | Network|
+--------+ +--------+
| \ / |
| \ / |
| \ / |
| X |
| / \ |
| / \ |
| / \ |
+--------+ +--------+
| AFBR | | AFBR |
+--| IPv4/6 |---| IPv4/6 |--+
| +--------+ +--------+ |
+--------+ | | +--------+
| IPv4 | | | | IPv4 |
| Client | | | | Client |
| Network|------| IPv4 |-------| Network|
+--------+ | only | +--------+
| |
| +--------+ +--------+ |
+--| AFBR |---| AFBR |--+
| IPv4/6 | | IPv4/6 |
+--------+ +--------+
| \ / |
| \ / |
| \ / |
| X |
| / \ |
| / \ |
| / \ |
+--------+ +--------+
| IPv6 | | IPv4 |
| Client | | Client |
| Network| | Network|
+--------+ +--------+
Figure 4: IPv6-Only PE Design ALL SAFI 6to4 Softwire - IPv6 Edge
over an IPv4-Only Core
Mishra, et al. Expires 28 January 2024 [Page 12]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
6.3. IPv6-Only PE Design ALL SAFI 4to6 Softwire IPv6-Only Core packet
walk
4to6 softwire where IPv6-Edge eBGP IPv6 peering where IPv4 packets at
network Edge traverse a IPv6-Only Core
In the scenario where IPv4 packets originating from a PE-CE edge are
tunneled over an MPLS or Segment Routing IPv4 underlay core network,
the PE and CE only have an IPv6 address configured on the interface.
In this scenario the IPv4 packets that ingress the CE from within the
CE AS are over an IPv6-Only interface and are forwarded to an IPv4
NLRI destination prefix learned from the Pure Transport Single IPv6
BGP Peer. In the IPv6-Only Edge peering architecture the PE is
IPv6-Only as all PE-CE interfaces are IPv6-Only. However, on the CE,
the PE-CE interface is the only interface that is IPv6-Only and all
other interfaces may or may not be IPv6-Only. Following the data
plane packet flow, IPv4 packets are forwarded from the ingress CE to
the IPv6-Only ingress PE where the VPN label imposition push per
prefix, per-vrf, per-CE occurs and the labeled packet is forwarded
over a 4to6 softwire IPv6-Only core, to the egress PE where the VPN
label disposition pop occurs and the native IPv4 packet is forwarded
to the egress CE. In the reverse direction IPv4 packets are
forwarded from the egress CE to egress PE where the VPN label
imposition per prefix, per-vrf, per-CE push occurs and the labeled
packet is forwarded back over the 4to6 softwire IPv6-Only core, to
the ingress PE where the VPN label disposition pop occurs and the
native IPv4 packet is forwarded to the ingress CE. . The
functionality of the IPv4 forwarding plane in this scenario is
identical from a data plane forwarding perspective to Dual Stack IPv4
forwarding scenario.
Mishra, et al. Expires 28 January 2024 [Page 13]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
+--------+ +--------+
| IPv4 | | IPv4 |
| Client | | Client |
| Network| | Network|
+--------+ +--------+
| \ / |
| \ / |
| \ / |
| X |
| / \ |
| / \ |
| / \ |
+--------+ +--------+
| AFBR | | AFBR |
+--| IPv4/6 |---| IPv4/6 |--+
| +--------+ +--------+ |
+--------+ | | +--------+
| IPv6 | | | | IPv6 |
| Client | | | | Client |
| Network|------| IPv6 |-------| Network|
+--------+ | only | +--------+
| |
| +--------+ +--------+ |
+--| AFBR |---| AFBR |--+
| IPv4/6 | | IPv4/6 |
+--------+ +--------+
| \ / |
| \ / |
| \ / |
| X |
| / \ |
| / \ |
| / \ |
+--------+ +--------+
| IPv4 | | IPv4 |
| Client | | Client |
| Network| | Network|
+--------+ +--------+
Figure 5: IPv6-Only PE Design ALL SAFI 4to6 Softwire - IPv4 Edge
over an IPv6-Only Core
Mishra, et al. Expires 28 January 2024 [Page 14]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
7. IPv6-Only PE Design ALL SAFI RFC8950 Applicability
7.1. IPv6-Only Edge Peering design next-hop encoding
This section describes [RFC8950] next hop encoding updates to
[RFC5549] applicability to this specification. IPv6-only eBGP Edge
PE-CE peering to carry IPv4 Unicast NLRI <AFI/SAFI> IPv4 <1/1> over
an IPv6 next hop BGP capability extended hop encoding IANA capability
codepoint value 5 defined is applicable to both [RFC5549] and
[RFC8950] as IPv4 Unicast NLRI <AFI/SAFI> IPv4 <1/1> does not change
in the RFC updates.
IPv4 packets over an IPv6-Only core 4to6 Softwire E2E packet flow is
part of the IPv6-Only design vendor interoperaiblity test cases and
in that respect is applicable as [RFC8950] updates [RFC5549] for
<AFI/SAFI> VPN-IPV4 <1/128>, and Multicasat VPN <1/129>
7.2. RFC8950 updates to RFC5549 applicability
This section describes the [RFC8950] next hop encoding updates to
[RFC5549]
In [RFC5549] when AFI/SAFI 1/128 is used, the next-hop address is
encoded as an IPv6 address with a length of 16 or 32 bytes. This
document modifies how the next-hop address is encoded to accommodate
all existing implementations and bring consistency with VPNv4oIPv4
and VPNv6oIPv6. The next-hop address is now encoded as a VPN-IPv6
address with a length of 24 or 48 bytes [RFC8950] (see Sections 3 and
6.2 of this document). This change addresses Erratum ID 5253
(Err5253). As all known and deployed implementations are
interoperable today and use the new proposed encoding, the change
does not break existing interoperability. Updates to [RFC8950] is
applicable to the IPv6-Only PE-CE edge design for the IPv6 next hop
encoding E2E test case of IPv4 packets over and IPv6-Only core 4to6
Softwire. In this test case IPv4 Unicast NLRI <AFI/SAFI> IPv4 <1/1>
is advertised over the PE to RR core peering 4to6 softwire in <AFI/
SAFI> VPN-IPV4 <1/128>. In this test case label allocation mode
comes into play which is discussed in section 8.9.
[RFC5549] next hop encoding of MP_REACH_NLRI with:
* NLRI= NLRI as per current AFI/SAFI definition
Advertising with [RFC4760] MP_REACH_NLRI with:
* AFI = 1
* SAFI = 128 or 129
Mishra, et al. Expires 28 January 2024 [Page 15]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
* Length of Next Hop Address = 16 or 32
* NLRI= NLRI as per current AFI/SAFI definition
[RFC8950] next hop encoding of MP_REACH_NLRI with:
* NLRI= NLRI as per current AFI/SAFI definition
Advertising with [RFC4760] MP_REACH_NLRI with:
* AFI = 1
* SAFI = 128 or 129
* Length of Next Hop Address = 24 or 48
* Next Hop Address = VPN-IPv6 address of next hop with an 8-octet RD
set to zero (potentially followed by the link-local VPN-IPv6
address of the next hop with an 8-octet RD is set to zero).
* NLRI= NLRI as per current AFI/SAFI definition
8. IPv6-Only PE Design Edge E2E Design for ALL AFI/SAFI
Listed below are the following IPv6-Only PE Design ALL SAFI design
scenario's:
<AFI/SAFI> IPv4 Unicast <1/1>, IPv6 Unicast <2/1>, VPN-IPV4 <1/128>,
VPN-IPV6 <2/128>, Multicasat VPN <1/129>, Multicasat VPN <2/129>,BGP-
LU IPV4 (GRT) <1/4>
8.1. IPv6-Only PE Design All SAFI Case-1 E2E IPv6-Only PE-CE, Global
Table over IPv4-Only Core(6PE), 6to4 softwire
Mishra, et al. Expires 28 January 2024 [Page 16]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
________
IPv6-Only _____ / \ IPv6-Only
PE / CE / \__/ \___ PE / CE
+----+ +----+ / \ +------+ +-----+
| | | | | |_ | | | |
| | | | | \ | | | |
| CE |--| PE |--\ IPv4-Only Core |----| PE |---| CE |
| | | | \0=========Underlay =======0| | | | |
+----+ +----+ \ __/ +------+ +-----+
IPv6 BGP peer \ MPLS / SR domain / IPv6 BGP peer
IPv4 forwarding \__ __ / IPv4 forwarding
IPv6 forwarding \_______/ \_____/ IPv6 forwarding
Figure 6: Design Solution-1 E2E IPv6-Only PE-CE, Global
Table over IPv4-Only Core (6PE)
8.2. IPv6-Only PE Design All SAFI Case-2 E2E IPv6-Only PE-CE, VPN over
IPv4-Only Core, 6to4 Softwire
________
IPv6-Only _____ / \ IPv6-Only
PE / CE / \__/ \___ PE / CE
+----+ +----+ / \ +------+ +-----+
| | | | | 0====VPN Overlay Tunnel ==0| | | | |
| | | | | \ | | | |
| CE |--| PE |--\ IPv4-Only Core |----| PE |---| CE |
| | | | \0=========Underlay =======0| | | | |
+----+ +----+ \ __/ +------+ +-----+
IPv6 BGP peer \ MPLS / SR domain / IPv6 BGP peer
IPv4 forwarding \__ __ / IPv4 forwarding
IPv6 forwarding \_______/ \_____/ IPv6 forwarding
Figure 7: Design Solution-2 E2E IPv6-Only PE-CE, VPN over
IPv4-Only Core
8.3. IPv6-Only PE Design All SAFI Case-3 E2E IPv6-Only PE-CE, Global
Table over IPv6-Only Core (4PE), 4to6 Softwire
Mishra, et al. Expires 28 January 2024 [Page 17]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
________
IPv6-Only _____ / \ IPv6-Only
PE / CE / \__/ \___ PE / CE
+----+ +----+ / \ +------+ +-----+
| | | | | |_ | | | |
| | | | | \ | | | |
| CE |--| PE |--\ IPv6-Only Core |----| PE |---| CE |
| | | | \0=========Underlay =======0| | | | |
+----+ +----+ \ __/ +------+ +-----+
IPv6 BGP peer \ MPLS / SR domain / IPv6 BGP peer
IPv4 forwarding \__ __ / IPv4 forwarding
IPv6 forwarding \_______/ \_____/ IPv6 forwarding
Figure 8: Design Solution-3 E2E IPv6-Only PE-CE, Global
Table over IPv6-Only Core (4PE)
8.4. IPv6-Only PE Design All SAFI Case-4 E2E IPv6-Only PE-CE, VPN over
IPv6-Only Core, 4to6 Softwire
________
IPv6-Only _____ / \ IPv6-Only
PE / CE / \__/ \___ PE / CE
+----+ +----+ / \ +------+ +-----+
| | | | | 0====VPN Overlay Tunnel ==0| | | | |
| | | | | \ | | | |
| CE |--| PE |--\ IPv6-Only Core |----| PE |---| CE |
| | | | \0=========Underlay =======0| | | | |
+----+ +----+ \ __/ +------+ +-----+
IPv6 BGP peer \ MPLS / SR domain / IPv6 BGP peer
IPv4 forwarding \__ __ / IPv4 forwarding
IPv6 forwarding \_______/ \_____/ IPv6 forwarding
Figure 9: Design Solution-4 E2E IPv6-Only PE-CE, VPN over
IPv6-Only Core
8.5. IPv6-Only PE Design All SAFI Case-5 E2E IPv6-Only PE-CE, Global
Table over IPv4-Only Core(6PE), 6to4 softwire -Inter-AS Option-B
Mishra, et al. Expires 28 January 2024 [Page 18]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
Inter-AS ASBR-ASBR link is IPv6-Only PE
IPv6-Only __________ __________ IPv6-Only
PE / CE / \ / \ PE / CE
+--+ +----+ / \ / \ +--+ +--+
| | | | | AS 1 \ | AS 2 \ | | | |
| | | | | \IPv6| \ | | | |
|CE|-| PE |--| IPv4-Only Core|----|IPv4-Only Core|--|PE|-|CE|
| | | | |0=Underlay==0 | |0==Underlay==0| | | | |
+--+ +----+ \ / \ / +--+ +--+
IPv6 BGP peer \ MPLS/SR / \ MPLS/SR / IPv6 BGP peer
IPv4 forwarding \_________/ \_________/ IPv4 forwarding
IPv6 forwarding IPv6 forwarding
Figure 10: Design Solution-5 E2E IPv6-Only PE-CE, Global
Table over IPv4-Only Core (6PE) - Inter-AS Option-B
8.6. IPv6-Only PE Design All SAFI Case-6 E2E IPv6-Only PE-CE, Global
Table over IPv4-Only Core(6PE), 6to4 softwire -Inter-AS Option-C
Inter-AS ASBR-ASBR link is IPv6-Only PE
IPv6-Only __________ __________ IPv6-Only
PE / CE / \ / \ PE / CE
+--+ +----+ / \ / \ +--+ +--+
| | | | | AS 1 \ | AS 2 \ | | | |
| | | | | \IPv6| \ | | | |
|CE|-| PE |--| IPv4-Only Core|----|IPv4-Only Core|--|PE|-|CE|
| | | | |0=Underlay==0 | |0==Underlay==0| | | | |
+--+ +----+ \ / \ / +--+ +--+
IPv6 BGP peer \ MPLS/SR / \ MPLS/SR / IPv6 BGP peer
IPv4 forwarding \_________/ \_________/ IPv4 forwarding
IPv6 forwarding IPv6 forwarding
Figure 11: Design Solution-6 E2E IPv6-Only PE-CE, Global
Table over IPv4-Only Core (6PE) - Inter-AS Option-C
8.7. IPv6-Only PE Design All SAFI Case-7 E2E IPv6-Only PE-CE, VPN over
IPv4-Only, 6to4 softwire -Inter-AS Option-B
Mishra, et al. Expires 28 January 2024 [Page 19]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
Inter-AS ASBR-ASBR link is IPv6-Only PE
IPv6-Only __________ __________ IPv6-Only
PE / CE / \ / \ PE / CE
+--+ +----+ / \ / \ +--+ +--+
| | | | | AS 1 \ | AS 2 \ | | | |
| | | | | \IPv6| \ | | | |
|CE|-| PE |--| IPv4-Only Core|----|IPv4-Only Core|--|PE|-|CE|
| | | | |0=Overlay===0 | |0==Overlay===0| | | | |
+--+ +----+ \ / \ / +--+ +--+
IPv6 BGP peer \ MPLS/SR / \ MPLS/SR / IPv6 BGP peer
IPv4 forwarding \_________/ \_________/ IPv4 forwarding
IPv6 forwarding IPv6 forwarding
Figure 12: Design Solution-7 E2E IPv6-Only PE-CE, VPN over
IPv4-Only Core - Inter-AS Option-B
8.8. IPv6-Only PE Design All SAFI Case-8 E2E IPv6-Only PE-CE, VPN over
IPv4-Only Core, 6to4 softwire -Inter-AS Option-C
Inter-AS ASBR-ASBR link is IPv6-Only PE
IPv6-Only __________ __________ IPv6-Only
PE / CE / \ / \ PE / CE
+--+ +----+ / \ / \ +--+ +--+
| | | | | AS 1 \ | AS 2 \ | | | |
| | | | | \IPv6| \ | | | |
|CE|-| PE |--| IPv4-Only Core|----|IPv4-Only Core|--|PE|-|CE|
| | | | |0=Overlay===0 | |0==Overlay===0| | | | |
+--+ +----+ \ / \ / +--+ +--+
IPv6 BGP peer \ MPLS/SR / \ MPLS/SR / IPv6 BGP peer
IPv4 forwarding \_________/ \_________/ IPv4 forwarding
IPv6 forwarding IPv6 forwarding
Figure 13: Design Solution-8 E2E IPv6-Only PE-CE, VPN over
IPv4-Only Core - Inter-AS Option-C
8.9. IPv6-Only PE Design All SAFI Case-9 E2E IPv6-Only PE-CE, Global
Table over IPv6-Only Core, 4to6 softwire -Inter-AS Option-B
Mishra, et al. Expires 28 January 2024 [Page 20]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
Inter-AS ASBR-ASBR link is IPv6-Only PE
IPv6-Only __________ __________ IPv6-Only
PE / CE / \ / \ PE / CE
+--+ +----+ / \ / \ +--+ +--+
| | | | | AS 1 \ | AS 2 \ | | | |
| | | | | \IPv6| \ | | | |
|CE|-| PE |--| IPv6-Only Core|----|IPv6-Only Core|--|PE|-|CE|
| | | | |0=Underlay==0 | |0==Underlay==0| | | | |
+--+ +----+ \ / \ / +--+ +--+
IPv6 BGP peer \ MPLS/SR / \ MPLS/SR / IPv6 BGP peer
IPv4 forwarding \_________/ \_________/ IPv4 forwarding
IPv6 forwarding IPv6 forwarding
Figure 14: Design Solution-9 E2E IPv6-Only PE-CE, Global
Table over IPv6-Only Core - Inter-AS Option-B
8.10. IPv6-Only PE Design All SAFI Case-10 E2E IPv6-Only PE-CE, Global
Table over IPv6-Only Core, 4to6 softwire -Inter-AS Option-C
Inter-AS ASBR-ASBR link is IPv6-Only PE
IPv6-Only __________ __________ IPv6-Only
PE / CE / \ / \ PE / CE
+--+ +----+ / \ / \ +--+ +--+
| | | | | AS 1 \ | AS 2 \ | | | |
| | | | | \IPv6| \ | | | |
|CE|-| PE |--| IPv6-Only Core|--- |IPv6-Only Core|--|PE|-|CE|
| | | | |0=Underlay==0 | |0==Underlay==0| | | | |
+--+ +----+ \ / \ / +--+ +--+
IPv6 BGP peer \ MPLS/SR / \ MPLS/SR / IPv6 BGP peer
IPv4 forwarding \_________/ \_________/ IPv4 forwarding
IPv6 forwarding IPv6 forwarding
Figure 15: Design Solution-10 E2E IPv6-Only PE-CE, Global
Table over IPv6-Only Core - Inter-AS Option-C
8.11. IPv6-Only PE Design All SAFI Case-4 E2E IPv6-Only PE-CE, VPN over
IPv6-Only Core, 4to6 softwire -Inter-AS Option-B
Mishra, et al. Expires 28 January 2024 [Page 21]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
Inter-AS ASBR-ASBR link is IPv6-Only PE
IPv6-Only __________ __________ IPv6-Only
PE / CE / \ / \ PE / CE
+--+ +----+ / \ / \ +--+ +--+
| | | | | AS 1 \ | AS 2 \ | | | |
| | | | | \IPv6| \ | | | |
|CE|-| PE |--| IPv6-Only Core|--- |IPv6-Only Core|--|PE|-|CE|
| | | | |0=Overlay===0 | |0==Overlay===0| | | | |
+--+ +----+ \ / \ / +--+ +--+
IPv6 BGP peer \ MPLS/SR / \ MPLS/SR / IPv6 BGP peer
IPv4 forwarding \_________/ \_________/ IPv4 forwarding
IPv6 forwarding IPv6 forwarding
Figure 16: Design Solution-11 E2E IPv6-Only PE-CE, VPN over
IPv6-Only Core - Inter-AS Option-B
8.12. IPv6-Only PE Design All SAFI Case-12 E2E IPv6-Only PE-CE, VPN
over IPv6-Only Core, 4to6 softwire -Inter-AS Option-C
Inter-AS ASBR-ASBR link is IPv6-Only PE
IPv6-Only __________ __________ IPv6-Only
PE / CE / \ / \ PE / CE
+--+ +----+ / \ / \ +--+ +--+
| | | | | AS 1 \ | AS 2 \ | | | |
| | | | | \IPv6| \ | | | |
|CE|-| PE |--| IPv6-Only Core|--- |IPv6-Only Core|--|PE|-|CE|
| | | | |0=Overlay===0 | |0==Overlay===0| | | | |
+--+ +----+ \ / \ / +--+ +--+
IPv6 BGP peer \ MPLS/SR / \ MPLS/SR / IPv6 BGP peer
IPv4 forwarding \_________/ \_________/ IPv4 forwarding
IPv6 forwarding IPv6 forwarding
Figure 17: Design Solution-12 E2E IPv6-Only PE-CE, VPN over
IPv6-Only Core - Inter-AS Option-C
9. IPv6-Only PE Design ALL AFI/SFI Operational Considerations
With a single IPv6 Peer carrying both IPv4 and IPv6 NLRI there are
some operational considerations in terms of what changes and what
does not change.
Mishra, et al. Expires 28 January 2024 [Page 22]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
What does not change with a single IPv6 transport peer carrying IPv4
NLRI and IPv6 NLRI below:
Routing Policy configuration is still separate for IPv4 and IPv6
configured by capability as previously.
Layer 1, Layer 2 issues such as one-way fiber or fiber cut will
impact both IPv4 and IPv6 as previously.
If the interface is in the Admin Down state, the IPv6 peer would go
down, and IPv4 NLRI and IPv6 NLRI would be withdrawn as previously.
Changes resulting from a single IPv6 transport peer carrying IPv4
NLRI and IPv6 NLRI below:
Physical interface is no longer dual stacked.
Any change in IPv6 address or DAD state will impact both IPv4 and
IPv6 NLRI exchange.
Single BFD session for both IPv4 and IPv6 NLRI fate sharing as the
session is now tied to the transport, which now is only IPv6 address
family.
Both IPv4 and IPv6 peer now exists under the IPv6 address family
configuration.
Fate sharing of IPv4 and IPv6 address family from a logical
perspective now carried over a single physical IPv6 peer.
From an operations perspective, prior to elimination of IPv4 peers,
an audit is recommended to identify and IPv4 and IPv6 peering
incongruencies that may exist and to rectify them. No operational
impacts or issues are expected with this change.
With MPLS VPN overlay, per-CE next-hop label allcoation mode where
both IPv4 and IPv6 prefixes have the same label in no table lookup
pop-n-forward mode should be taken into consideration.
10. IANA Considerations
There are not any IANA considerations.
Mishra, et al. Expires 28 January 2024 [Page 23]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
11. Security Considerations
The extensions defined in this document allow BGP to propagate
reachability information about IPv4 prefixes over an MPLS or SR
IPv6-Only core network. As such, no new security issues are raised
beyond those that already exist in BGP-4 and the use of MP-BGP for
IPv6. Both IPv4 and IPv6 peers exist under the IPv6 address family
configuration. The security features of BGP and corresponding
security policy defined in the ISP domain are applicable. For the
inter-AS distribution of IPv6 routes according to case (a) of
Section 4 of this document, no new security issues are raised beyond
those that already exist in the use of eBGP for IPv6 [RFC2545].
12. Acknowledgments
Thanks to Kaliraj Vairavakkalai, Linda Dunbar, Aijun Wang, Eduardfor
Vasilenko, Joel Harlpern, Michael McBride, Ketan Talaulikar for
review comments.
13. Contributors
The following people contributed substantive text to this document:
Mohana Sundari
EMail: mohanas@juniper.net
14. References
14.1. Normative References
[I-D.ietf-bess-bgp-multicast]
Zhang, Z. J., Giuliano, L., Patel, K., Wijnands, I.,
Mishra, M. P., and A. Gulko, "BGP Based Multicast", Work
in Progress, Internet-Draft, draft-ietf-bess-bgp-
multicast-05, 27 June 2023,
<https://datatracker.ietf.org/doc/html/draft-ietf-bess-
bgp-multicast-05>.
[I-D.ietf-bess-ipv6-only-pe-design]
Mishra, G. S., Mishra, M. P., Tantsura, J., Madhavi, S.,
Yang, Q., Simpson, A., and S. Chen, "IPv6-Only PE Design
for IPv4-NLRI with IPv6-NH", Work in Progress, Internet-
Draft, draft-ietf-bess-ipv6-only-pe-design-04, 20 May
2023, <https://datatracker.ietf.org/doc/html/draft-ietf-
bess-ipv6-only-pe-design-04>.
Mishra, et al. Expires 28 January 2024 [Page 24]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
[I-D.ietf-idr-bgp-car]
Rao, D., Agrawal, S., and Co-authors, "BGP Color-Aware
Routing (CAR)", Work in Progress, Internet-Draft, draft-
ietf-idr-bgp-car-02, 6 July 2023,
<https://datatracker.ietf.org/doc/html/draft-ietf-idr-bgp-
car-02>.
[I-D.ietf-idr-flowspec-nvo3]
Eastlake, D. E., Weiguo, H., Zhuang, S., Li, Z., and R.
Gu, "BGP Dissemination of Flow Specification Rules for
Tunneled Traffic", Work in Progress, Internet-Draft,
draft-ietf-idr-flowspec-nvo3-18, 5 July 2023,
<https://datatracker.ietf.org/doc/html/draft-ietf-idr-
flowspec-nvo3-18>.
[I-D.ietf-idr-rpd]
Li, Z., Ou, L., Luo, Y., Mishra, G. S., Chen, H., and H.
Wang, "BGP Extensions for Routing Policy Distribution
(RPD)", Work in Progress, Internet-Draft, draft-ietf-idr-
rpd-17, 30 June 2023,
<https://datatracker.ietf.org/doc/html/draft-ietf-idr-rpd-
17>.
[I-D.ietf-idr-sdwan-edge-discovery]
Dunbar, L., Hares, S., Raszuk, R., Majumdar, K., Mishra,
G. S., and V. Kasiviswanathan, "BGP UPDATE for SD-WAN Edge
Discovery", Work in Progress, Internet-Draft, draft-ietf-
idr-sdwan-edge-discovery-10, 23 June 2023,
<https://datatracker.ietf.org/doc/html/draft-ietf-idr-
sdwan-edge-discovery-10>.
[I-D.ietf-idr-segment-routing-te-policy]
Previdi, S., Filsfils, C., Talaulikar, K., Mattes, P.,
Jain, D., and S. Lin, "Advertising Segment Routing
Policies in BGP", Work in Progress, Internet-Draft, draft-
ietf-idr-segment-routing-te-policy-21, 23 July 2023,
<https://datatracker.ietf.org/doc/html/draft-ietf-idr-
segment-routing-te-policy-21>.
[I-D.ietf-l3vpn-bgpvpn-auto]
Ould-Brahim, H. H., "Using BGP as an Auto-Discovery
Mechanism for VR-based Layer-3 VPNs", Work in Progress,
Internet-Draft, draft-ietf-l3vpn-bgpvpn-auto-09, 25 April
2007, <https://datatracker.ietf.org/doc/html/draft-ietf-
l3vpn-bgpvpn-auto-09>.
Mishra, et al. Expires 28 January 2024 [Page 25]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
[I-D.ietf-lsvr-bgp-spf]
Patel, K., Lindem, A., Zandi, S., and W. Henderickx, "BGP
Link-State Shortest Path First (SPF) Routing", Work in
Progress, Internet-Draft, draft-ietf-lsvr-bgp-spf-26, 19
June 2023, <https://datatracker.ietf.org/doc/html/draft-
ietf-lsvr-bgp-spf-26>.
[I-D.mpmz-bess-mup-safi]
Murakami, T., Patel, K., Matsushima, S., Zhang, Z. J.,
Agrawal, S., and D. Voyer, "BGP Extensions for the Mobile
User Plane (MUP) SAFI", Work in Progress, Internet-Draft,
draft-mpmz-bess-mup-safi-02, 13 March 2023,
<https://datatracker.ietf.org/doc/html/draft-mpmz-bess-
mup-safi-02>.
[I-D.nalawade-kapoor-tunnel-safi]
Nalawade, G., "BGP Tunnel SAFI", Work in Progress,
Internet-Draft, draft-nalawade-kapoor-tunnel-safi-05, 29
June 2006, <https://datatracker.ietf.org/doc/html/draft-
nalawade-kapoor-tunnel-safi-05>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC2545] Marques, P. and F. Dupont, "Use of BGP-4 Multiprotocol
Extensions for IPv6 Inter-Domain Routing", RFC 2545,
DOI 10.17487/RFC2545, March 1999,
<https://www.rfc-editor.org/info/rfc2545>.
[RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", RFC 4291, DOI 10.17487/RFC4291, February
2006, <https://www.rfc-editor.org/info/rfc4291>.
[RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
2006, <https://www.rfc-editor.org/info/rfc4364>.
[RFC4760] Bates, T., Chandra, R., Katz, D., and Y. Rekhter,
"Multiprotocol Extensions for BGP-4", RFC 4760,
DOI 10.17487/RFC4760, January 2007,
<https://www.rfc-editor.org/info/rfc4760>.
[RFC4761] Kompella, K., Ed. and Y. Rekhter, Ed., "Virtual Private
LAN Service (VPLS) Using BGP for Auto-Discovery and
Signaling", RFC 4761, DOI 10.17487/RFC4761, January 2007,
<https://www.rfc-editor.org/info/rfc4761>.
Mishra, et al. Expires 28 January 2024 [Page 26]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
[RFC5195] Ould-Brahim, H., Fedyk, D., and Y. Rekhter, "BGP-Based
Auto-Discovery for Layer-1 VPNs", RFC 5195,
DOI 10.17487/RFC5195, June 2008,
<https://www.rfc-editor.org/info/rfc5195>.
[RFC5492] Scudder, J. and R. Chandra, "Capabilities Advertisement
with BGP-4", RFC 5492, DOI 10.17487/RFC5492, February
2009, <https://www.rfc-editor.org/info/rfc5492>.
[RFC5747] Wu, J., Cui, Y., Li, X., Xu, M., and C. Metz, "4over6
Transit Solution Using IP Encapsulation and MP-BGP
Extensions", RFC 5747, DOI 10.17487/RFC5747, March 2010,
<https://www.rfc-editor.org/info/rfc5747>.
[RFC6037] Rosen, E., Ed., Cai, Y., Ed., and IJ. Wijnands, "Cisco
Systems' Solution for Multicast in BGP/MPLS IP VPNs",
RFC 6037, DOI 10.17487/RFC6037, October 2010,
<https://www.rfc-editor.org/info/rfc6037>.
[RFC7117] Aggarwal, R., Ed., Kamite, Y., Fang, L., Rekhter, Y., and
C. Kodeboniya, "Multicast in Virtual Private LAN Service
(VPLS)", RFC 7117, DOI 10.17487/RFC7117, February 2014,
<https://www.rfc-editor.org/info/rfc7117>.
[RFC7267] Martini, L., Ed., Bocci, M., Ed., and F. Balus, Ed.,
"Dynamic Placement of Multi-Segment Pseudowires",
RFC 7267, DOI 10.17487/RFC7267, June 2014,
<https://www.rfc-editor.org/info/rfc7267>.
[RFC7432] Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A.,
Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based
Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February
2015, <https://www.rfc-editor.org/info/rfc7432>.
[RFC7752] Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
S. Ray, "North-Bound Distribution of Link-State and
Traffic Engineering (TE) Information Using BGP", RFC 7752,
DOI 10.17487/RFC7752, March 2016,
<https://www.rfc-editor.org/info/rfc7752>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8277] Rosen, E., "Using BGP to Bind MPLS Labels to Address
Prefixes", RFC 8277, DOI 10.17487/RFC8277, October 2017,
<https://www.rfc-editor.org/info/rfc8277>.
Mishra, et al. Expires 28 January 2024 [Page 27]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
[RFC8955] Loibl, C., Hares, S., Raszuk, R., McPherson, D., and M.
Bacher, "Dissemination of Flow Specification Rules",
RFC 8955, DOI 10.17487/RFC8955, December 2020,
<https://www.rfc-editor.org/info/rfc8955>.
[RFC9012] Patel, K., Van de Velde, G., Sangli, S., and J. Scudder,
"The BGP Tunnel Encapsulation Attribute", RFC 9012,
DOI 10.17487/RFC9012, April 2021,
<https://www.rfc-editor.org/info/rfc9012>.
[RFC9015] Farrel, A., Drake, J., Rosen, E., Uttaro, J., and L.
Jalil, "BGP Control Plane for the Network Service Header
in Service Function Chaining", RFC 9015,
DOI 10.17487/RFC9015, June 2021,
<https://www.rfc-editor.org/info/rfc9015>.
14.2. Informative References
[I-D.ietf-idr-dynamic-cap]
Chen, E. and S. R. Sangli, "Dynamic Capability for BGP-4",
Work in Progress, Internet-Draft, draft-ietf-idr-dynamic-
cap-16, 21 October 2021,
<https://datatracker.ietf.org/doc/html/draft-ietf-idr-
dynamic-cap-16>.
[RFC4659] De Clercq, J., Ooms, D., Carugi, M., and F. Le Faucheur,
"BGP-MPLS IP Virtual Private Network (VPN) Extension for
IPv6 VPN", RFC 4659, DOI 10.17487/RFC4659, September 2006,
<https://www.rfc-editor.org/info/rfc4659>.
[RFC4684] Marques, P., Bonica, R., Fang, L., Martini, L., Raszuk,
R., Patel, K., and J. Guichard, "Constrained Route
Distribution for Border Gateway Protocol/MultiProtocol
Label Switching (BGP/MPLS) Internet Protocol (IP) Virtual
Private Networks (VPNs)", RFC 4684, DOI 10.17487/RFC4684,
November 2006, <https://www.rfc-editor.org/info/rfc4684>.
[RFC4798] De Clercq, J., Ooms, D., Prevost, S., and F. Le Faucheur,
"Connecting IPv6 Islands over IPv4 MPLS Using IPv6
Provider Edge Routers (6PE)", RFC 4798,
DOI 10.17487/RFC4798, February 2007,
<https://www.rfc-editor.org/info/rfc4798>.
[RFC4925] Li, X., Ed., Dawkins, S., Ed., Ward, D., Ed., and A.
Durand, Ed., "Softwire Problem Statement", RFC 4925,
DOI 10.17487/RFC4925, July 2007,
<https://www.rfc-editor.org/info/rfc4925>.
Mishra, et al. Expires 28 January 2024 [Page 28]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
[RFC5549] Le Faucheur, F. and E. Rosen, "Advertising IPv4 Network
Layer Reachability Information with an IPv6 Next Hop",
RFC 5549, DOI 10.17487/RFC5549, May 2009,
<https://www.rfc-editor.org/info/rfc5549>.
[RFC5565] Wu, J., Cui, Y., Metz, C., and E. Rosen, "Softwire Mesh
Framework", RFC 5565, DOI 10.17487/RFC5565, June 2009,
<https://www.rfc-editor.org/info/rfc5565>.
[RFC6074] Rosen, E., Davie, B., Radoaca, V., and W. Luo,
"Provisioning, Auto-Discovery, and Signaling in Layer 2
Virtual Private Networks (L2VPNs)", RFC 6074,
DOI 10.17487/RFC6074, January 2011,
<https://www.rfc-editor.org/info/rfc6074>.
[RFC6513] Rosen, E., Ed. and R. Aggarwal, Ed., "Multicast in MPLS/
BGP IP VPNs", RFC 6513, DOI 10.17487/RFC6513, February
2012, <https://www.rfc-editor.org/info/rfc6513>.
[RFC6514] Aggarwal, R., Rosen, E., Morin, T., and Y. Rekhter, "BGP
Encodings and Procedures for Multicast in MPLS/BGP IP
VPNs", RFC 6514, DOI 10.17487/RFC6514, February 2012,
<https://www.rfc-editor.org/info/rfc6514>.
[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017,
<https://www.rfc-editor.org/info/rfc8126>.
[RFC8950] Litkowski, S., Agrawal, S., Ananthamurthy, K., and K.
Patel, "Advertising IPv4 Network Layer Reachability
Information (NLRI) with an IPv6 Next Hop", RFC 8950,
DOI 10.17487/RFC8950, November 2020,
<https://www.rfc-editor.org/info/rfc8950>.
Appendix A. SAFI LIST FOR PE-CE Edge Scenario
IPv6-Only PE Design listing of PE-CE Edge ALL applicable SAFI. Here
we showing the catagorization grouping by columns of the SAFI into 2
use case categories.
* Unicst
* Multicast
Mishra, et al. Expires 28 January 2024 [Page 29]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
+============+=================+=========+===========+===========+
| SAFI Value | Description | Unicast | Multicast | Reference |
+============+=================+=========+===========+===========+
| 1 | Unicast | Yes | No | [RFC4760] |
+------------+-----------------+---------+-----------+-----------+
| 2 | Multicast | No | Yes | [RFC2545] |
+------------+-----------------+---------+-----------+-----------+
| 78 | MCAST-TREE SAFI | No | Yes | [RFC2545] |
+------------+-----------------+---------+-----------+-----------+
Table 1: IPv4-Only PE DESIGN ALL SAFI's PE-CE Edge Scenario
IPv4-Only PE design supports 25 / 32 IANA SAFI's of which the 7 not
supported do not use AFI=1 IPv4 or AFI=2 IPv6.
Appendix B. SAFI LIST FOR Inter-AS PE-PE Scenario
IPv6-Only PE Design listing of Inter-AS PE-PE ALL applicable SAFI.
Here we show the catagorization grouping by columns of the SAFI into
5 use case categories.
* Unicst
* Multicast
* L1-L2 VPN
* Tunnel
* BGP Policy
+=====+=============+=======+=========+=====+======+======+========================================+
|SAFI |Description |Unicast|Multicast|L1-L2|Tunnel| BGP | Reference |
|Value| | | | VPN | |Policy| |
+=====+=============+=======+=========+=====+======+======+========================================+
|1 |NLRI Unicast |Yes |No |No |No |No |[RFC4760] |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|2 |NLRI |No |Yes |No |No |No |[RFC4760] |
| |Multicast | | | | | | |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|4 |NLRI MPLS |Yes |No |No |No |No |[RFC8277] |
| |Laels | | | | | | |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|5 |MCAST-VPN |No |Yes |No |No |No |[RFC6514] |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|6 |Dynamic Multi|No |No |Yes |No |No |[RFC7267] |
| |Segment PW | | | | | | |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
Mishra, et al. Expires 28 January 2024 [Page 30]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
|8 |MCAST-VPLS |No |Yes |No |No |No |[RFC7117] |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|9 |BGP-SFC |No |No |No |No |No |[RFC9015] |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|64 |Tunnel SAFI |No |No |No |Yes |No |[I-D.nalawade-kapoor-tunnel-safi] |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|65 |VPLS |No |No |No |No |No |[RFC4761] |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|66 |BGP MDT SAFI |NO |Yes |No |No |No |[RFC6037] |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|67 |BGP 4to6 SAFI|No |No |No |Yes |No |[RFC5747] |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|68 |BGP 6to4 SAFI|No |No |No |Yes |No |[RFC5747] |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|69 |L1 VPN Auto |No |No |Yes |No |No |[RFC5195] |
| |Discovery | | | | | | |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|70 |BGP EVPN |No |No |No |No |No |[RFC7432] |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|71 |BGP-LS |No |No |No |No |No |[RFC7752] |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|72 |BGP-LS-VPN |No |No |No |No |No |[RFC7752] |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|73 |SR-TE Policy |No |No |No |No |Yes |[I-D.ietf-idr-segment-routing-te-policy]|
| |SAFI | | | | | | |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|74 |SD-WAN |No |No |No |No |Yes |[I-D.ietf-idr-sdwan-edge-discovery] |
| |Capabilities | | | | | | |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|75 |Routing |No |No |No |No |No |[I-D.ietf-idr-rpd] |
| |Policy SAFI | | | | | | |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|77 |Tunneled |No |No |No |Yes |No |[I-D.ietf-idr-flowspec-nvo3] |
| |Traffic | | | | | | |
| |Flowspec | | | | | | |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|78 |MCAST-TREE |No |Yes |No |No |No |[I-D.ietf-bess-bgp-multicast] |
| |SAFI | | | | | | |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|79 |BGP-DPS |No |No |No |No |Yes |Arista Dynamic Path Selection |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|80 |BGP-LS-SPF |No |No |No |No |No |[I-D.ietf-lsvr-bgp-spf] |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|83 |BGP CAR |No |No |No |No |Yes |[I-D.ietf-idr-bgp-car] |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|84 |BGP CAR VPN |No |No |No |No |Yes |[I-D.ietf-idr-bgp-car] |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|85 |BGP MUP SAFI |No |No |No |No |Yes |[I-D.mpmz-bess-mup-safi] |
Mishra, et al. Expires 28 January 2024 [Page 31]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|128 |MPLS VPN |Yes |No |No |No |No |[RFC4364] |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|129 |MPLS |No |Yes |No |No |No |[RFC6513] |
| |Multicast VPN| | | | | | |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|132 |Route Target |Yes |No |No |No |No |[RFC4684] |
| |Constrains | | | | | | |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|133 |Dissemination|No |No |No |No |Yes |[RFC8955] |
| |of Flowspec | | | | | | |
| |Rules | | | | | | |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|134 |L3VPN |No |No |No |No |Yes |[RFC8955] |
| |Dissemination| | | | | | |
| |of Flowspec | | | | | | |
| |Rules | | | | | | |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
|140 |VPN Auto |No |No |No |No |Yes |[I-D.ietf-l3vpn-bgpvpn-auto] |
| |Discovery | | | | | | |
+-----+-------------+-------+---------+-----+------+------+----------------------------------------+
Table 2: IPv4-Only PE DESIGN ALL SAFI's Inter-AS PE-PE Scenario
IPv6-Only PE design supports 25 / 32 IANA SAFI's of which the 7 not
supported do not use AFI=1 IPv4 or AFI=2 IPv6.
Authors' Addresses
Gyan Mishra
Verizon Inc.
Email: gyan.s.mishra@verizon.com
Mankamana Mishra
Cisco Systems
821 Alder Drive,
MILPITAS
Email: mankamis@cisco.com
Jeff Tantsura
Microsoft, Inc.
Email: jefftant.ietf@gmail.com
Sudha Madhavi
Juniper Networks, Inc.
Mishra, et al. Expires 28 January 2024 [Page 32]
Internet-Draft IPv6-Only PE IPv4 DESIGN ALL SAFI July 2023
Email: smadhavi@juniper.net
Qing Yang
Arista Networks
Email: qyang@arista.com
Adam Simpson
Nokia
Email: adam.1.simpson@nokia.com
Shuanglong Chen
Huawei Technologies
Email: chenshuanglong@huawei.com
Mishra, et al. Expires 28 January 2024 [Page 33]