Internet DRAFT - draft-nakajima-camellia
draft-nakajima-camellia
INTERNET-DRAFT M. Matsui
J. Nakajima
Mitsubishi Electric Corporation
Expires June 2004 S. Moriai
Sony Computer Entertainmemt Inc.
December 2003
A Description of the Camellia Encryption Algorithm
<draft-nakajima-camellia-03.txt>
Status of this Memo
This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.
Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as
reference material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
Abstract
This document describes the Camellia encryption algorithm. Camellia
is a block cipher with 128-bit block size and 128-, 192-, and
256-bit keys. The algorithm description is presented together with
key scheduling part and data randomizing part.
Note:
This work was done when the second author worked for NTT.
1. Introduction
1.1 Camellia
Camellia was jointly developed by Nippon Telegraph and Telephone
Corporation and Mitsubishi Electric Corporation in 2000
Nakajima & Moriai [Page 1]
INTERNET-DRAFT Camellia Encryption Algorithm December 2003
[CamelliaSpec]. Camellia specifies the 128-bit block size and 128-,
192-, and 256-bit key sizes, the same interface as the Advanced
Encryption Standard (AES). Camellia is characterized by its
suitability for both software and hardware implementations as well
as its high level of security. From a practical viewpoint, it is
designed to enable flexibility in software and hardware
implementations on 32-bit processors widely used over the Internet
and many applications, 8-bit processors used in smart cards,
cryptographic hardware, embedded systems, and so on [CamelliaTech].
Moreover, its key setup time is excellent, and its key agility is
superior to that of AES.
Camellia has been scrutinized by the wide cryptographic community
during several projects for evaluating crypto algorithms. In
particular, Camellia was selected as a recommended cryptographic
primitive by the EU NESSIE (New European Schemes for Signatures,
Integrity and Encryption) project [NESSIE] and also included in
the list of cryptographic techniques for Japanese e-Government
systems which were selected by the Japan CRYPTREC (Cryptography
Research and Evaluation Committees) [CRYPTREC].
1.2 Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document (in
uppercase, as shown) are to be interpreted as described in
[RFC2119].
2. Algorithm Description
Camellia can be divided into "key scheduling part" and "data
randomizing part".
2.1 Terminology
The following operators are used in this document to describe the
algorithm.
& bitwise AND operation.
| bitwise OR operation.
^ bitwise exclusive-OR operation.
<< logical left shift operation.
>> logical right shift operation.
<<< left rotation operation.
~y bitwise complement of y.
0x hexadecimal representation.
Note that the logical left shift operation is done with the infinite
data width.
The constant values of MASK8, MASK32, MASK64, and MASK128 are defined
as follows.
MASK8 = 0xff;
Nakajima & Moriai [Page 2]
INTERNET-DRAFT Camellia Encryption Algorithm December 2003
MASK32 = 0xffffffff;
MASK64 = 0xffffffffffffffff;
MASK128 = 0xffffffffffffffffffffffffffffffff;
2.2 Key Scheduling Part
In the key schedule part of Camellia, the 128-bit variables of KL
and KR are defined as follows. For 128-bit keys, the 128-bit key K
is used as KL and KR is 0. For 192-bit keys, the leftmost 128-bits
of key K are used as KL and the concatenation of the rightmost
64-bits of K and the complement of the rightmost 64-bits of K are
used as KR. For 256-bit keys, the leftmost 128-bits of key K are
used as KL and the rightmost 128-bits of K are used as KR.
128-bit key K:
KL = K; KR = 0;
192-bit key K:
KL = K >> 64;
KR = ((K & MASK64) << 64) | (~(K & MASK64));
256-bit key K:
KL = K >> 128;
KR = K & MASK128;
The 128-bit variables KA and KB are generated from KL and KR as
follows. Note that KB is used only if the length of the secret key
is 192 or 256 bits. D1 and D2 are 64-bit temporary variables.
D1 = (KL ^ KR) >> 64;
D2 = (KL ^ KR) & MASK64;
D2 = D2 ^ F(D1, Sigma1);
D1 = D1 ^ F(D2, Sigma2);
D1 = D1 ^ (KL >> 64);
D2 = D2 ^ (KL & MASK64);
D2 = D2 ^ F(D1, Sigma3);
D1 = D1 ^ F(D2, Sigma4);
KA = (D1 << 64) | D2;
D1 = (KA ^ KR) >> 64;
D2 = (KA ^ KR) & MASK64;
D2 = D2 ^ F(D1, Sigma5);
D1 = D1 ^ F(D2, Sigma6);
KB = (D1 << 64) | D2;
The 64-bit constants Sigma1, Sigma2, ..., Sigma6 are used as "keys"
in the Feistel network. These constant values are, in hexadecimal
notation, as follows.
Sigma1 = 0xA09E667F3BCC908B;
Sigma2 = 0xB67AE8584CAA73B2;
Sigma3 = 0xC6EF372FE94F82BE;
Sigma4 = 0x54FF53A5F1D36F1C;
Sigma5 = 0x10E527FADE682D1D;
Sigma6 = 0xB05688C2B3E6C1FD;
Nakajima & Moriai [Page 3]
INTERNET-DRAFT Camellia Encryption Algorithm December 2003
The 64-bit subkeys are generated by rotating KL, KR, KA and KB and
taking the left- or right-half of them.
For 128-bit keys, subkeys are generated as follows.
kw1 = (KL <<< 0) >> 64;
kw2 = (KL <<< 0) & MASK64;
k1 = (KA <<< 0) >> 64;
k2 = (KA <<< 0) & MASK64;
k3 = (KL <<< 15) >> 64;
k4 = (KL <<< 15) & MASK64;
k5 = (KA <<< 15) >> 64;
k6 = (KA <<< 15) & MASK64;
ke1 = (KA <<< 30) >> 64;
ke2 = (KA <<< 30) & MASK64;
k7 = (KL <<< 45) >> 64;
k8 = (KL <<< 45) & MASK64;
k9 = (KA <<< 45) >> 64;
k10 = (KL <<< 60) & MASK64;
k11 = (KA <<< 60) >> 64;
k12 = (KA <<< 60) & MASK64;
ke3 = (KL <<< 77) >> 64;
ke4 = (KL <<< 77) & MASK64;
k13 = (KL <<< 94) >> 64;
k14 = (KL <<< 94) & MASK64;
k15 = (KA <<< 94) >> 64;
k16 = (KA <<< 94) & MASK64;
k17 = (KL <<< 111) >> 64;
k18 = (KL <<< 111) & MASK64;
kw3 = (KA <<< 111) >> 64;
kw4 = (KA <<< 111) & MASK64;
For 192- and 256-bit keys, subkeys are generated as follows.
kw1 = (KL <<< 0) >> 64;
kw2 = (KL <<< 0) & MASK64;
k1 = (KB <<< 0) >> 64;
k2 = (KB <<< 0) & MASK64;
k3 = (KR <<< 15) >> 64;
k4 = (KR <<< 15) & MASK64;
k5 = (KA <<< 15) >> 64;
k6 = (KA <<< 15) & MASK64;
ke1 = (KR <<< 30) >> 64;
ke2 = (KR <<< 30) & MASK64;
k7 = (KB <<< 30) >> 64;
k8 = (KB <<< 30) & MASK64;
k9 = (KL <<< 45) >> 64;
k10 = (KL <<< 45) & MASK64;
k11 = (KA <<< 45) >> 64;
k12 = (KA <<< 45) & MASK64;
ke3 = (KL <<< 60) >> 64;
ke4 = (KL <<< 60) & MASK64;
k13 = (KR <<< 60) >> 64;
Nakajima & Moriai [Page 4]
INTERNET-DRAFT Camellia Encryption Algorithm December 2003
k14 = (KR <<< 60) & MASK64;
k15 = (KB <<< 60) >> 64;
k16 = (KB <<< 60) & MASK64;
k17 = (KL <<< 77) >> 64;
k18 = (KL <<< 77) & MASK64;
ke5 = (KA <<< 77) >> 64;
ke6 = (KA <<< 77) & MASK64;
k19 = (KR <<< 94) >> 64;
k20 = (KR <<< 94) & MASK64;
k21 = (KA <<< 94) >> 64;
k22 = (KA <<< 94) & MASK64;
k23 = (KL <<< 111) >> 64;
k24 = (KL <<< 111) & MASK64;
kw3 = (KB <<< 111) >> 64;
kw4 = (KB <<< 111) & MASK64;
2.3 Data Randomizing Part
2.3.1 Encryption for 128-bit keys
128-bit plaintext M is divided into the left 64-bit D1 and the right
64-bit D2.
D1 = M >> 64;
D2 = M & MASK64;
D1 = D1 ^ kw1; // Prewhitening
D2 = D2 ^ kw2;
D2 = D2 ^ F(D1, k1); // Round 1
D1 = D1 ^ F(D2, k2); // Round 2
D2 = D2 ^ F(D1, k3); // Round 3
D1 = D1 ^ F(D2, k4); // Round 4
D2 = D2 ^ F(D1, k5); // Round 5
D1 = D1 ^ F(D2, k6); // Round 6
D1 = FL (D1, ke1); // FL
D2 = FLINV(D2, ke2); // FLINV
D2 = D2 ^ F(D1, k7 ); // Round 7
D1 = D1 ^ F(D2, k8 ); // Round 8
D2 = D2 ^ F(D1, k9 ); // Round 9
D1 = D1 ^ F(D2, k10); // Round 10
D2 = D2 ^ F(D1, k11); // Round 11
D1 = D1 ^ F(D2, k12); // Round 12
D1 = FL (D1, ke3); // FL
D2 = FLINV(D2, ke4); // FLINV
D2 = D2 ^ F(D1, k13); // Round 13
D1 = D1 ^ F(D2, k14); // Round 14
D2 = D2 ^ F(D1, k15); // Round 15
D1 = D1 ^ F(D2, k16); // Round 16
D2 = D2 ^ F(D1, k17); // Round 17
D1 = D1 ^ F(D2, k18); // Round 18
D2 = D2 ^ kw3; // Postwhitening
D1 = D1 ^ kw4;
128-bit ciphertext C is constructed from D1 and D2 as follows.
Nakajima & Moriai [Page 5]
INTERNET-DRAFT Camellia Encryption Algorithm December 2003
C = (D2 << 64) | D1;
2.3.2 Encryption for 192- and 256-bit keys
128-bit plaintext M is divided into the left 64-bit D1 and the
right 64-bit D2.
D1 = M >> 64;
D2 = M & MASK64;
D1 = D1 ^ kw1; // Prewhitening
D2 = D2 ^ kw2;
D2 = D2 ^ F(D1, k1); // Round 1
D1 = D1 ^ F(D2, k2); // Round 2
D2 = D2 ^ F(D1, k3); // Round 3
D1 = D1 ^ F(D2, k4); // Round 4
D2 = D2 ^ F(D1, k5); // Round 5
D1 = D1 ^ F(D2, k6); // Round 6
D1 = FL (D1, ke1); // FL
D2 = FLINV(D2, ke2); // FLINV
D2 = D2 ^ F(D1, k7 ); // Round 7
D1 = D1 ^ F(D2, k8 ); // Round 8
D2 = D2 ^ F(D1, k9 ); // Round 9
D1 = D1 ^ F(D2, k10); // Round 10
D2 = D2 ^ F(D1, k11); // Round 11
D1 = D1 ^ F(D2, k12); // Round 12
D1 = FL (D1, ke3); // FL
D2 = FLINV(D2, ke4); // FLINV
D2 = D2 ^ F(D1, k13); // Round 13
D1 = D1 ^ F(D2, k14); // Round 14
D2 = D2 ^ F(D1, k15); // Round 15
D1 = D1 ^ F(D2, k16); // Round 16
D2 = D2 ^ F(D1, k17); // Round 17
D1 = D1 ^ F(D2, k18); // Round 18
D1 = FL (D1, ke5); // FL
D2 = FLINV(D2, ke6); // FLINV
D2 = D2 ^ F(D1, k19); // Round 19
D1 = D1 ^ F(D2, k20); // Round 20
D2 = D2 ^ F(D1, k21); // Round 21
D1 = D1 ^ F(D2, k22); // Round 22
D2 = D2 ^ F(D1, k23); // Round 23
D1 = D1 ^ F(D2, k24); // Round 24
D2 = D2 ^ kw3; // Postwhitening
D1 = D1 ^ kw4;
128-bit ciphertext C is constructed from D1 and D2 as follows.
C = (D2 << 64) | D1;
2.3.3 Decryption
The decryption procedure of Camellia can be done in the same way as
the encryption procedure by reversing the order of the subkeys.
Nakajima & Moriai [Page 6]
INTERNET-DRAFT Camellia Encryption Algorithm December 2003
That is to say:
128-bit key:
kw1 <-> kw3
kw2 <-> kw4
k1 <-> k18
k2 <-> k17
k3 <-> k16
k4 <-> k15
k5 <-> k14
k6 <-> k13
k7 <-> k12
k8 <-> k11
k9 <-> k10
ke1 <-> ke4
ke2 <-> ke3
192- or 256-bit key:
kw1 <-> kw3
kw2 <-> kw4
k1 <-> k24
k2 <-> k23
k3 <-> k22
k4 <-> k21
k5 <-> k20
k6 <-> k19
k7 <-> k18
k8 <-> k17
k9 <-> k16
k10 <-> k15
k11 <-> k14
k12 <-> k13
ke1 <-> ke6
ke2 <-> ke5
ke3 <-> ke4
2.4 Components of Camellia
2.4.1 F-function
Function F takes two parameters. One is 64-bit wide input data,
namely F_IN. The other is 64-bit wide subkey, namely KE. F returns
64-bit wide data, namely F_OUT.
F(F_IN, KE)
begin
var x as 64-bit unsigned integer;
var t1, t2, t3, t4, t5, t6, t7, t8 as 8-bit unsigned integer;
var y1, y2, y3, y4, y5, y6, y7, y8 as 8-bit unsigned integer;
x = F_IN ^ KE;
t1 = x >> 56;
t2 = (x >> 48) & MASK8;
t3 = (x >> 40) & MASK8;
Nakajima & Moriai [Page 7]
INTERNET-DRAFT Camellia Encryption Algorithm December 2003
t4 = (x >> 32) & MASK8;
t5 = (x >> 24) & MASK8;
t6 = (x >> 16) & MASK8;
t7 = (x >> 8) & MASK8;
t8 = x & MASK8;
t1 = SBOX1[t1];
t2 = SBOX2[t2];
t3 = SBOX3[t3];
t4 = SBOX4[t4];
t5 = SBOX2[t5];
t6 = SBOX3[t6];
t7 = SBOX4[t7];
t8 = SBOX1[t8];
y1 = t1 ^ t3 ^ t4 ^ t6 ^ t7 ^ t8;
y2 = t1 ^ t2 ^ t4 ^ t5 ^ t7 ^ t8;
y3 = t1 ^ t2 ^ t3 ^ t5 ^ t6 ^ t8;
y4 = t2 ^ t3 ^ t4 ^ t5 ^ t6 ^ t7;
y5 = t1 ^ t2 ^ t6 ^ t7 ^ t8;
y6 = t2 ^ t3 ^ t5 ^ t7 ^ t8;
y7 = t3 ^ t4 ^ t5 ^ t6 ^ t8;
y8 = t1 ^ t4 ^ t5 ^ t6 ^ t7;
F_OUT = (y1 << 56) | (y2 << 48) | (y3 << 40) | (y4 << 32)
| (y5 << 24) | (y6 << 16) | (y7 << 8) | y8;
return FO_OUT;
end.
SBOX2, SBOX3, and SBOX4 are defined using SBOX1 as follows:
SBOX2[x] = SBOX1[x] <<< 1;
SBOX3[x] = SBOX1[x] <<< 7;
SBOX4[x] = SBOX1[x <<< 1];
SBOX1 is defined by the following table. For example, SBOX1[0x3d]
equals 86.
SBOX1:
0 1 2 3 4 5 6 7 8 9 a b c d e f
00: 112 130 44 236 179 39 192 229 228 133 87 53 234 12 174 65
10: 35 239 107 147 69 25 165 33 237 14 79 78 29 101 146 189
20: 134 184 175 143 124 235 31 206 62 48 220 95 94 197 11 26
30: 166 225 57 202 213 71 93 61 217 1 90 214 81 86 108 77
40: 139 13 154 102 251 204 176 45 116 18 43 32 240 177 132 153
50: 223 76 203 194 52 126 118 5 109 183 169 49 209 23 4 215
60: 20 88 58 97 222 27 17 28 50 15 156 22 83 24 242 34
70: 254 68 207 178 195 181 122 145 36 8 232 168 96 252 105 80
80: 170 208 160 125 161 137 98 151 84 91 30 149 224 255 100 210
90: 16 196 0 72 163 247 117 219 138 3 230 218 9 63 221 148
a0: 135 92 131 2 205 74 144 51 115 103 246 243 157 127 191 226
b0: 82 155 216 38 200 55 198 59 129 150 111 75 19 190 99 46
c0: 233 121 167 140 159 110 188 142 41 245 249 182 47 253 180 89
d0: 120 152 6 106 231 70 113 186 212 37 171 66 136 162 141 250
e0: 114 7 185 85 248 238 172 10 54 73 42 104 60 56 241 164
f0: 64 40 211 123 187 201 67 193 21 227 173 244 119 199 128 158
2.4.2 FL- and FLINV-functions
Nakajima & Moriai [Page 8]
INTERNET-DRAFT Camellia Encryption Algorithm December 2003
Function FL takes two parameters. One is 64-bit wide input data,
namely FL_IN. The other is 64-bit wide subkey, namely KE. FL
returns 64-bit wide data, namely FL_OUT.
FL(FL_IN, KE)
begin
var x1, x2 as 32-bit unsigned integer;
var k1, k2 as 32-bit unsigned integer;
x1 = FL_IN >> 32;
x2 = FL_IN & MASK32;
k1 = KE >> 32;
k2 = KE & MASK32;
x2 = x2 ^ ((x1 & k1) <<< 1);
x1 = x1 ^ (x2 | k2);
FL_OUT = (x1 << 32) | x2;
end.
Function FLINV is the inverse function of FL.
FLINV(FLINV_IN, KE)
begin
var y1, y2 as 32-bit unsigned integer;
var k1, k2 as 32-bit unsigned integer;
y1 = FLINV_IN >> 32;
y2 = FLINV_IN & MASK32;
k1 = KE >> 32;
k2 = KE & MASK32;
y1 = y1 ^ (y2 | k2);
y2 = y2 ^ ((y1 & k1) <<< 1);
FLINV_OUT = (y1 << 32) | y2;
end.
3. Object Identifiers
The Object Identifier for Camellia with 18 rounds and 128-bit key in
Cipher Block Chaining (CBC) mode is as follows:
id-camellia128-cbc OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) 392 200011 61 security(1)
algorithm(1) symmetric-encryption-algorithm(1)
camellia128-cbc(2) }
The Object Identifier for Camellia with 24 rounds and 192-bit key in
Cipher Block Chaining (CBC) mode is as follows:
id-camellia192-cbc OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) 392 200011 61 security(1)
algorithm(1) symmetric-encryption-algorithm(1)
camellia192-cbc(3) }
The Object Identifier for Camellia with 24 rounds and 256-bit key in
Cipher Block Chaining (CBC) mode is as follows:
id-camellia256-cbc OBJECT IDENTIFIER ::=
Nakajima & Moriai [Page 9]
INTERNET-DRAFT Camellia Encryption Algorithm December 2003
{ iso(1) member-body(2) 392 200011 61 security(1)
algorithm(1) symmetric-encryption-algorithm(1)
camellia256-cbc(4) }
The above alogrithms need Initialization Vector (IV) as like as other
algorithms, such as DES-CBC, DES-EDE3-CBC, MISTY1-CBC and so on. To
determine the value of IV, the above algorithms take parameter as:
CamelliaCBCParameter ::= CamelliaIV -- Initialization Vector
CamelliaIV ::= OCTET STRING (SIZE(16))
When these object identifiers are used, plaintext is padded before
encrypt it. At least 1 padding octet is appended at the end of the
plaintext to make the length of the plaintext to the multiple of 16
octets. The value of these octets is as same as the number of
appended octets. (e.g., If 10 octets are needed to pad, the value is
0x0a.)
4. Security Considerations
The recent advances in cryptanalytic techniques are remarkable. A
quantitative evaluation of security against powerful cryptanalytic
techniques such as differential cryptanalysis and linear
cryptanalysis is considered to be essential in designing any new
block cipher. We evaluated the security of Camellia by utilizing
state-of-the-art cryptanalytic techniques. We confirmed that
Camellia has no differential and linear characteristics that hold
with probability more than 2^(-128), which means that it is extremely
unlikely that differential and linear attacks will succeed against
the full 18-round Camellia. Moreover, Camellia was designed to offer
security against other advanced cryptanalytic attacks including
higher order differential attacks, interpolation attacks, related-key
attacks, truncated differential attacks, and so on [Camellia].
5. Intellectual Property Statement
The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementors or users of this specification can
be obtained from the IETF Secretariat.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
Nakajima & Moriai [Page 10]
INTERNET-DRAFT Camellia Encryption Algorithm December 2003
this standard. Please address the information to the IETF Executive
Director.
The IETF has been notified of intellectual property rights claimed in
regard to some or all of the specification contained in this
document. For more information consult the online list of claimed
rights.
6. Informative References
[CamelliaSpec] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai,
J. Nakajima, and T. Tokita, "Specification of Camellia --- a
128-bit Block Cipher". http://info.isl.ntt.co.jp/camellia/
[CamelliaTech] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai,
J. Nakajima, and T. Tokita, "Camellia: A 128-Bit Block Cipher
Suitable for Multiple Platforms".
http://info.isl.ntt.co.jp/camellia/
[Camellia] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J.
Nakajima, and T. Tokita, "Camellia: A 128-Bit Block Cipher
Suitable for Multiple Platforms - Design and Analysis -", In
Selected Areas in Cryptography, 7th Annual International
Workshop, SAC 2000, Waterloo, Ontario, Canada, August 2000,
Proceedings, Lecture Notes in Computer Science 2012, pp.39-56,
Springer-Verlag, 2001.
[CRYPTREC] "CRYPTREC Advisory Committee Report FY2002", Ministry
of Public Management, Home Affairs, Posts and
Telecommunications, and Ministry of Economy, Trade and
Industry, March 2003.
http://www.soumu.go.jp/joho_tsusin/security/cryptrec.html
CRYPTREC home page by Information-technology Promotion Agency,
Japan (IPA).
http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html
[NESSIE] New European Schemes for Signatures, Integrity and
Encryption (NESSIE) project. http://www.cryptonessie.org
[RFC2119] S. Bradner, "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
Appendix A. Example Data of Camellia
Here is a test data for Camellia in hexadecimal form.
128-bit key
Key : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
Plaintext : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
Ciphertext: 67 67 31 38 54 96 69 73 08 57 06 56 48 ea be 43
192-bit key
Key : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
: 00 11 22 33 44 55 66 77
Nakajima & Moriai [Page 11]
INTERNET-DRAFT Camellia Encryption Algorithm December 2003
Plaintext : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
Ciphertext: b4 99 34 01 b3 e9 96 f8 4e e5 ce e7 d7 9b 09 b9
256-bit key
Key : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff
Plaintext : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
Ciphertext: 9a cc 23 7d ff 16 d7 6c 20 ef 7c 91 9e 3a 75 09
Authors' Addresses
Mitsuru Matsui & Junko Nakajima
Mitsubishi Electric Corporation, Information Technology R&D Center
5-1-1 Ofuna, Kamakura, Kanagawa 247-8501, Japan
Phone: +81-467-41-2190
FAX: +81-467-41-2185
Email: matsui@iss.isl.melco.co.jp
Shiho Moriai
Sony Computer Entertainment Inc.
Phone: +81-3-6438-7523
FAX: +81-3-6438-8629
Email: camellia@isl.ntt.co.jp (Camellia team)
shiho@rc.scei.sony.co.jp (Shiho Moriai)
Nakajima & Moriai [Page 12]