Internet DRAFT - draft-schaad-pkix-rfc2875-bis
draft-schaad-pkix-rfc2875-bis
PKIX J. Schaad
Internet-Draft Soaring Hawk Consulting
Obsoletes: 2875 (if approved) H. Prafullchandra
Intended status: Standards Track Hy-Trust
Expires: September 28, 2013 March 27, 2013
Diffie-Hellman Proof-of-Possession Algorithms
draft-schaad-pkix-rfc2875-bis-08
Abstract
This document describes two methods for producing an integrity check
value from a Diffie-Hellman key pair and one method for producing an
integrity check value from an Elliptic Curve key pair. This behavior
is needed for such operations as creating the signature of a PKCS #10
certification request. These algorithms are designed to provide a
proof-of-possession of the private key and not to be a general
purpose signing algorithm.
This document obsoletes RFC 2875.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 28, 2013.
Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
Schaad & PrafullchandraExpires September 28, 2013 [Page 1]
Internet-Draft DH POP Algorithms March 2013
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Changes since RFC2875 . . . . . . . . . . . . . . . . . . 4
1.2. Requirements Terminology . . . . . . . . . . . . . . . . 4
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4
3. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4. Static DH Proof-of-Possession Process . . . . . . . . . . . . 5
4.1. ASN.1 Encoding . . . . . . . . . . . . . . . . . . . . . 7
5. Discrete Logarithm Signature . . . . . . . . . . . . . . . . 10
5.1. Expanding the Digest Value . . . . . . . . . . . . . . . 11
5.2. Signature Computation Algorithm . . . . . . . . . . . . . 12
5.3. Signature Verification Algorithm . . . . . . . . . . . . 12
5.4. ASN.1 Encoding . . . . . . . . . . . . . . . . . . . . . 13
6. Static ECDH Proof-of-Possession Process . . . . . . . . . . . 15
6.1. ASN.1 Encoding . . . . . . . . . . . . . . . . . . . . . 17
7. Security Considerations . . . . . . . . . . . . . . . . . . . 19
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 19
9. References . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.1. Normative References . . . . . . . . . . . . . . . . . . 19
9.2. Informative References . . . . . . . . . . . . . . . . . 20
Appendix A. ASN.1 Modules . . . . . . . . . . . . . . . . . . . 20
A.1. 2008 ASN.1 Module . . . . . . . . . . . . . . . . . . . . 21
A.2. 1988 ASN.1 Module . . . . . . . . . . . . . . . . . . . . 25
Appendix B. Example of Static DH Proof-of-Possession . . . . . . 27
Appendix C. Example of Discrete Log Signature . . . . . . . . . 35
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 40
1. Introduction
Schaad & PrafullchandraExpires September 28, 2013 [Page 2]
Internet-Draft DH POP Algorithms March 2013
Among the responsibilities of a Certificate Authority in issuing
certificates is a requirement that it verifies the identity for the
entity to which it is issuing a certificate and that it verifies that
the private key for the public key to be placed in the certificate is
in the possession of that entity. The process of validating that the
private key is held by the requester of the certificate is called
Proof-of-Possession(POP). Further details on why POP is important
can be found in Appendix C of RFC 4211 [CRMF].
This document is designed to deal with the problem of how to support
POP for encryption-only keys. PKCS #10 [RFC2986] and the Certificate
Request Message Format (CRMF) [CRMF] both define syntaxes for
certification requests. However, while CRMF supports an alternative
method to support POP for encryption-only keys, PKCS #10 does not.
PKCS #10 assumes that the public key being requested for
certification corresponds to an algorithm that is capable of
producing a POP by a signature operation. Diffie-Hellman (DH) and
Elliptic Curve Diffie-Hellman (ECDH) are key agreement algorithms
and, as such, cannot be directly used for signing or encryption.
This document describes a set of three proof-of-possession
algorithms. Two methods use the key agreement process (one for
Diffie-Hellman and one for Elliptic-Curve DH) to provide a shared
secret as the basis of an integrity check value. For these methods,
the value is constructed for a specific recipient/verifier by using a
public key of that verifier. The third method uses a modified
signature algorithm (for Diffie-Hellman). This method allows for
arbitrary verifiers.
It should be noted that we did not create an algorithm that parallels
ECDSA (Elliptical Curve Digital Signature Algorithm) as was done for
DSA (Digital Signature Algorithm). When using ECDH, the common
practice is to use one of a set of predefined curves, each of these
curves has been designed to be paired with one of the commonly used
hash algorithm. This differs in practice from the Diffie-Hellman
case where the common practice is to generate a set of group
parameters either on a single machine or for a given community and
are aligned to encryption algorithms rather than hash algorithms.
The implication is that, if a key has the ability to perform the
modified DSA algorithm for ECDSA, it should be able to use the
correct hash algorithm and perform the regular ECDSA signature
algorithm with the correctly sized hash.
Schaad & PrafullchandraExpires September 28, 2013 [Page 3]
Internet-Draft DH POP Algorithms March 2013
1.1. Changes since RFC2875
The following changes have been made:
o The Static DH Proof-of-Possession algorithm has been re-written
for parameterization of the hash algorithm and the message
authentication code (MAC) algorithm.
o New instances of the static DH POP algorithm have been created
using HMAC paired with the SHA-224, SHA-256, SHA-384 and SHA-512
hash algorithms. However the current SHA-1 algorithm remains
identical.
o The Discrete Logarithm Signature algorithm has been re-written for
parameterization of the hash algorithm.
o New instances of the Discrete Logarithm Signature have been
created for the SHA-224, SHA-256, SHA-384, and SHA-512 hash
functions. However the current SHA-1 algorithm remains identical.
o A new Static ECDH Proof-of-Possession algorithm has been added.
o New instances of the Static ECDH POP algorithm has been created
using HMAC paired with the SHA-224, SHA-256, SHA-384, and SHA-512
hash functions.
1.2. Requirements Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
When the words are in lower case they have their natural language
meaning.
2. Terminology
The following definitions will be used in this document
DH certificate = a certificate whose SubjectPublicKey is a DH public
value and is signed with any signature algorithm (e.g., RSA or DSA).
ECDH certificate = a certificate whose SubjectPublicKey is an ECDH
public value and is signed with any signature algorithm (e.g., RSA or
ECDSA).
Proof-of-Possession (POP) is a means that provides a method for a
second party to perform an algorithm to establish with some degree of
Schaad & PrafullchandraExpires September 28, 2013 [Page 4]
Internet-Draft DH POP Algorithms March 2013
assurance that the first party does possess and has the ability to
use a private key. The reasoning behind doing POP can be found in
Appendix C in [CRMF].
3. Notation
This section describes mathematical notations, conventions and
symbols used throughout this document.
a | b : Concatenation of a and b
a ^ b : a raised to the power of b
a mod b : a modulo b
a / b : a divided by b using integer division
a * b : a times b
depending on context multiplication may be within
an Elliptic Curve or normal multiplication
KDF(a) : Key Derivation Function producing a value from a.
MAC(a, b) : Message Authentication Code function where
a is the key and b is the text
LEFTMOST(a, b) : Return the b left most bits of a
FLOOR(a) : Return n where n is the largest integer such that
n <= a
Details on how to implement the HMAC version of a MAC function used
in this document can be found in RFC 2104 [RFC2104], RFC 6234
[RFC6234] and RFC 4231 [RFC4231].
4. Static DH Proof-of-Possession Process
The Static DH POP algorithm is set up to use a key derivation
function (KDF) and a message authentication code (MAC). This
algorithm requires that a common set of group parameters be used by
both the creator and verifier of the POP value.
The steps for creating a DH POP are:
1. An entity (E) chooses the group parameters for a DH key
agreement.
This is done simply by selecting the group parameters from a
certificate for the recipient of the POP process. A certificate
with the correct group parameters has to be available.
Schaad & PrafullchandraExpires September 28, 2013 [Page 5]
Internet-Draft DH POP Algorithms March 2013
Let the common DH parameters be g and p; and let the DH key-pair
from the certificate be known as the Recipient key pair (Rpub and
Rpriv).
Rpub = g^x mod p (where x=Rpriv, the private DH value)
2. The entity generates a DH public/private key-pair using the group
parameters from step 1.
For an entity E:
Epriv = DH private value = y
Epub = DH public value = g^y mod p
3. The POP computation process will then consist of:
a) The value to be signed (text) is obtained. (For a PKCS #10
object, the value is the DER encoded
certificationRequestInfo field represented as an octet
string.)
b) A shared DH secret is computed, as follows,
shared secret = ZZ = g^(x*y) mod p
[This is done by the entity E as Rpub^y and by the
Recipient as Epub^x, where Rpub is retrieved from the
Recipient's DH certificate (or is provided in the protocol)
and Epub is retrieved from the certification request.]
c) A temporary key K is derived from the shared secret ZZ as
follows:
K = KDF(LeadingInfo | ZZ | TrailingInfo)
LeadingInfo ::= Subject Distinguished Name from
recipient's certificate
TrailingInfo ::= Issuer Distinguished Name from
recipient's certificate
d) Using the defined MAC function, compute MAC(K, text).
The POP verification process requires the Recipient to carry out
steps (a) through (d) and then simply compare the result of step (d)
with what it received as the signature component. If they match then
the following can be concluded:
Schaad & PrafullchandraExpires September 28, 2013 [Page 6]
Internet-Draft DH POP Algorithms March 2013
a) The Entity possesses the private key corresponding to the public
key in the certification request because it needed the private key
to calculate the shared secret; and
b) Only the Recipient that the entity sent the request to could
actually verify the request because it would require its own
private key to compute the same shared secret. In the case where
the recipient is a Certification Authority, this protects the
Entity from rogue CAs.
4.1. ASN.1 Encoding
The algorithm outlined above allows for the use of an arbitrary hash
function in computing the temporary key and the MAC algorithm. In
this specification we define object identifiers for the SHA-1,
SHA-256, SHA-384 and SHA-512 hash values and use HMAC for the MAC
algorithm. The ASN.1 structures associated with the static Diffie-
Hellman POP algorithm are:
DhSigStatic ::= SEQUENCE {
issuerAndSerial IssuerAndSerialNumber OPTIONAL,
hashValue MessageDigest
}
sa-dhPop-static-sha1-hmac-sha1 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-dhPop-static-sha1-hmac-sha1
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
id-dh-sig-hmac-sha1 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 3
}
id-dhPop-static-sha1-hmac-sha1 OBJECT IDENTIFIER ::=
id-dh-sig-hmac-sha1
sa-dhPop-static-sha224-hmac-sha224 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-static-sha224-hmac-sha224
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-static-sha224-hmac-sha224 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 15
}
Schaad & PrafullchandraExpires September 28, 2013 [Page 7]
Internet-Draft DH POP Algorithms March 2013
sa-dhPop-static-sha256-hmac-sha256 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-static-sha256-hmac-sha256
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-static-sha256-hmac-sha256 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 16
}
sa-dhPop-static-sha384-hmac-sha384 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-static-sha384-hmac-sha384
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-static-sha384-hmac-sha384 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 17
}
sa-dhPop-static-sha512-hmac-sha512 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-static-sha512-hmac-sha512
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-static-sha512-hmac-sha512 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 18
}
In the above ASN.1 the following items are defined:
DhSigStatic
This ASN.1 type structure holds the information describing the
signature. The structure has the following fields:
issuerAndSerial
This field contains the issuer name and serial number of the
certificate from which the public key was obtained. The
issuerAndSerial field is omitted if the public key did not
come from a certificate.
Schaad & PrafullchandraExpires September 28, 2013 [Page 8]
Internet-Draft DH POP Algorithms March 2013
hashValue
This field contains the result of the MAC operation in step
3d.
sa-dhPop-static-sha1-hmac-sha1
An ASN.1 SIGNATURE-ALGORITHM object which associates together the
information describing a signature algorithm. The structure
DhSigStatic represents the signature value and the parameters MUST
be absent.
id-dhPop-static-sha1-hmac-sha1
This OID identifies the Static DH POP algorithm that uses SHA-1 as
the KDF and HMAC-SHA1 as the MAC function. The new OID was
created for naming consistency with the other OIDs defined here.
The value of the OID is the same value as id-dh-sig-hmac-sha1
which was defined in the previous version of this document
[RFC2875].
sa-dhPop-static-sha224-hmac-sha224
An ASN.1 SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DhSigStatic represents the signature value and the parameters MUST
be absent.
id-dhPop-static-sha224-hmac-sha224
This OID identifies the Static DH POP algorithm that uses SHA-224
as the KDF and HMAC-SHA224 as the MAC function.
sa-dhPop-static-sha256-hmac-sha256
An ASN.1 SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DhSigStatic represents the signature value and the parameters MUST
be absent.
id-dhPop-static-sha256-hmac-sha256
This OID identifies the Static DH POP algorithm that uses SHA-256
as the KDF and HMAC-SHA256 as the MAC function.
sa-dhPop-static-sha384-hmac-sha384
An ASN.1 SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DhSigStatic represents the signature value and the parameters MUST
be absent.
id-dhPop-static-sha384-hmac-sha384
This OID identifies the Static DH POP algorithm that uses SHA-384
as the KDF and HMAC-SHA384 as the MAC function.
Schaad & PrafullchandraExpires September 28, 2013 [Page 9]
Internet-Draft DH POP Algorithms March 2013
sa-dhPop-static-sha512-hmac-sha512
An ASN.1 SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DhSigStatic represents the signature value and the parameters MUST
be absent.
id-dhPop-static-sha512-hmac-sha512
This OID identifies the Static DH POP algorithm that uses SHA-512
as the KDF and HMAC-SHA512 as the MAC function.
5. Discrete Logarithm Signature
When a single set of parameters is used for a large group of keys,
the chances that a collision will occur in the set of keys either by
accident or design increases as the number of keys used increases. A
large number of keys from a single parameter set also encourages the
use of brute force methods of attack as the entire set of keys in the
parameters can be attacked in a single operation rather than having
to attack each key parameter set individually.
For this reason we need to create a proof-of-possession for Diffie-
Hellman keys that does not require the use of a common set of
parameters.
This POP is based on the Digital Signature Algorithm, but we have
removed the restrictions dealing with the hash and key sizes imposed
by the [FIPS-186] standard. The use of this method does impose some
additional restrictions on the set of keys that may be used, however
if the key generation algorithm documented in [RFC2631] is used the
required restrictions are met. The additional restrictions are the
requirement for the existence of a q parameter. Adding the q
parameter is generally accepted as a good practice as it allows for
checking of small subgroup attacks.
The following definitions are used in the rest of this section:
p is a large prime
g = h^((p-1)/q) mod p ,
where h is any integer 1 < h < p-1 such that h^((p-1)/q) mod p > 1
(g has order q mod p)
q is a large prime
j is a large integer such that p = q*j + 1
x is a randomly or pseudo-randomly generated integer with 1 < x < q
y = g^x mod p
HASH is a hash function such that
b = the output size of HASH in bits
Note: These definitions match the ones in [RFC2631].
Schaad & PrafullchandraExpires September 28, 2013 [Page 10]
Internet-Draft DH POP Algorithms March 2013
5.1. Expanding the Digest Value
Besides the addition of a q parameter, [FIPS-186] also imposes size
restrictions on the parameters. The length of q must be 160 bits
(matching the output length of the SHA-1 digest algorithm) and the
length of p must be 1024 bits. The size restriction on p is
eliminated in this document, but the size restriction on q is
replaced with the requirement that q must be at least b bits in
length. (If the hash function is SHA-1, then b=160 bits and the size
restriction on b is identical with that in [FIPS-186].)
Given that there is not a random length-hashing algorithm, a hash
value of the message will need to be derived such that the hash is in
the range from 0 to q-1. If the length of q is greater than b then a
method must be provided to expand the hash.
The method for expanding the digest value used in this section does
not add any additional security beyond the b bits provided by the
hash algorithm. For this reason the hash algorithm should be the
largest size possible to match q. The value being signed is
increased mainly to enhance the difficulty of reversing the signature
process.
This algorithm produces m, the value to be signed.
Let L = the size of q (i.e., 2^L <= q < 2^(L+1)).
Let M be the original message to be signed.
Let b be the length of HASH output
1. Compute d = HASH(M), the digest of the original message.
2. If L == b then m = d.
3. If L > b then follow steps (a) through (d) below.
a) Set n = FLOOR(L / b)
b) Set m = d, the initial computed digest value.
c) For i = 0 to n - 1
m = m | HASH(m)
d) m = LEFTMOST(m, L-1)
Thus the final result of the process meets the criteria that 0 <= m <
q.
Schaad & PrafullchandraExpires September 28, 2013 [Page 11]
Internet-Draft DH POP Algorithms March 2013
5.2. Signature Computation Algorithm
The signature algorithm produces the pair of values (r, s), which is
the signature. The signature is computed as follows:
Given m, the value to be signed, as well as the parameters defined
earlier in section 5.
1. Generate a random or pseudorandom integer k, such that 0 < k-1 <
q.
2. Compute r = (g^k mod p) mod q.
3. If r is zero, repeat from step 1.
4. Compute s = ((k^-1) * (m + x*r)) mod q.
5. If s is zero, repeat from step 1.
5.3. Signature Verification Algorithm
The signature verification process is far more complicated than is
normal for the Digital Signature Algorithm, as some assumptions about
the validity of parameters cannot be taken for granted.
Given a value m to be validated, the signature value pair (r, s) and
the parameters for the key.
1. Perform a strong verification that p is a prime number.
2. Perform a strong verification that q is a prime number.
3. Verify that q is a factor of p-1, if any of the above checks fail
then the signature cannot be verified and must be considered a
failure.
4. Verify that r and s are in the range [1, q-1].
5. Compute w = (s^-1) mod q.
6. Compute u1 = m*w mod q.
7. Compute u2 = r*w mod q.
8. Compute v = ((g^u1 * y^u2) mod p) mod q.
9. Compare v and r, if they are the same then the signature verified
correctly.
Schaad & PrafullchandraExpires September 28, 2013 [Page 12]
Internet-Draft DH POP Algorithms March 2013
5.4. ASN.1 Encoding
The signature algorithm is parameterized by the hash algorithm. The
ASN.1 structures associated with the Discrete Logarithm Signature
algorithm are:
sa-dhPop-SHA1 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dh-pop
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha1 }
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-sha1 OBJECT IDENTIFIER ::= id-alg-dh-pop
id-alg-dh-pop OBJECT IDENTIFIER ::= { id-pkix id-alg(6) 4 }
sa-dhPop-sha224 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-sha224
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha224 }
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-sha224 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 5
}
sa-dhPop-sha256 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-sha256
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha256 }
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-sha256 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 6
}
sa-dhPop-sha384 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-sha384
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha384 }
PUBLIC-KEYS { pk-dh }
Schaad & PrafullchandraExpires September 28, 2013 [Page 13]
Internet-Draft DH POP Algorithms March 2013
}
id-alg-dhPop-sha384 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 7
}
sa-dhPop-sha512 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-sha512
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha512 }
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-sha512 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 8
}
In the above ASN.1 the following items are defined:
sa-dhPop-sha1
A SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DSA-Sig-Value represents the signature value and the parameters
DomainParameters SHOULD be omitted in the signature, but MUST be
present in the associated key request.
id-alg-dhPop-sha1
This OID identifies the discrete logarithm signature using SHA-1
as the hash algorithm. The new OID was created for naming
consistency with the others defined here. The value of the OID is
the same as id-alg-dh-pop which was defined in the previous
version of this document [RFC2875].
sa-dhPop-sha224
A SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DSA-Sig-Value represents the signature value and the parameters
DomainParameters SHOULD be omitted in the signature, but MUST be
present in the associated key request.
id-alg-dhPop-sha224
This OID identifies the discrete logarithm signature using SHA-224
as the hash algorithm.
sa-dhPop-sha256
Schaad & PrafullchandraExpires September 28, 2013 [Page 14]
Internet-Draft DH POP Algorithms March 2013
A SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DSA-Sig-Value represents the signature value and the parameters
DomainParameters SHOULD be omitted in the signature, but MUST be
present in the associated key request.
id-alg-dhPop-sha256
This OID identifies the discrete logarithm signature using SHA-256
as the hash algorithm.
sa-dhPop-sha384
A SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DSA-Sig-Value represents the signature value and the parameters
DomainParameters SHOULD be omitted in the signature, but MUST be
present in the associated key request.
id-alg-dhPop-sha384
This OID identifies the discrete logarithm signature using SHA-384
as the hash algorithm.
sa-dhPop-sha512
A SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DSA-Sig-Value represents the signature value and the parameters
DomainParameters SHOULD be omitted in the signature, but MUST be
present in the associated key request.
id-alg-dhPop-sha512
This OID identifies the discrete logarithm signature using SHA-512
as the hash algorithm.
6. Static ECDH Proof-of-Possession Process
The Static ECDH POP algorithm is set up to use a key derivation
function (KDF) and a message authentication code (MAC). This
algorithm requires that a common set of group parameters be used by
both the creator and verifier of the POP value. Full details of how
Elliptic Curve Cryptography works can be found in RFC 6090 [RFC6090].
The steps for creating an ECDH POP are:
1. An entity (E) chooses the group parameters for an ECDH key
agreement.
This is done simply by selecting the group parameters from a
certificate for the recipient of the POP process. A certificate
with the correct group parameters has to be available.
Schaad & PrafullchandraExpires September 28, 2013 [Page 15]
Internet-Draft DH POP Algorithms March 2013
The ECDH parameters can be identified either by a named group or
by a set of curve parameters. Section 2.3.5 of RFC 3279
[RFC3279] documents how the parameters are encoded for PKIX
certificates. For PKIX-based applications, the parameters will
almost always be defined by a named group. Designate G as the
group from the ECDH parameters. Let the ECDH key-pair associated
with the certificate be known as the Recipient key pair (Rpub and
Rpriv).
Rpub = Rpriv * G
2. The entity generates an ECDH public/private key-pair using the
parameters from step 1.
For an entity E:
Epriv = Entity private value
Epub = ECDH public point = Epriv * G
3. The POP computation process will then consist of:
a) The value to be signed (text) is obtained. (For a PKCS #10
object, the value is the DER encoded
certificationRequestInfo field represented as an octet
string.)
b) A shared ECDH secret is computed, as follows,
shared secret point (x, y) = Epriv * Rpub = Rpriv * Epub
shared secret value ZZ is the x coordinate of the computed
point
c) A temporary key K is derived from the shared secret ZZ as
follows:
K = KDF(LeadingInfo | ZZ | TrailingInfo)
LeadingInfo ::= Subject Distinguished Name from certificate
TrailingInfo ::= Issuer Distinguished Name from certificate
d) Compute MAC(K, text).
The POP verification process requires the Recipient to carry out
steps (a) through (d) and then simply compare the result of step (d)
with what it received as the signature component. If they match then
the following can be concluded:
Schaad & PrafullchandraExpires September 28, 2013 [Page 16]
Internet-Draft DH POP Algorithms March 2013
a) The Entity possesses the private key corresponding to the public
key in the certification request because it needed the private key
to calculate the shared secret; and
b) Only the Recipient that the entity sent the request to could
actually verify the request because it would require its own
private key to compute the same shared secret. In the case where
the recipient is a Certification Authority, this protects the
Entity from rogue CAs.
6.1. ASN.1 Encoding
The algorithm outlined above allows for the use of an arbitrary hash
function in computing the temporary key and the MAC value. In this
specification we defined object identifiers for the SHA-1 and SHA-256
hash values. The ASN.1 structures associated with the static ECDH
POP algorithm are:
id-alg-ecdhPop-static-sha224-hmac-sha224 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 25
}
sa-ecdhPop-sha224-hmac-sha224 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-ecdhPop-static-sha224-hmac-sha224
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-ec }
}
id-alg-ecdhPop-static-sha256-hmac-sha256 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 26
}
sa-ecdhPop-sha256-hmac-sha256 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-ecdhPop-static-sha256-hmac-sha256
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-ec }
}
id-alg-ecdhPop-static-sha384-hmac-sha384 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 27
}
sa-ecdhPop-sha384-hmac-sha384 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-ecdhPop-static-sha384-hmac-sha384
VALUE DhSigStatic
PARAMS ARE absent
Schaad & PrafullchandraExpires September 28, 2013 [Page 17]
Internet-Draft DH POP Algorithms March 2013
PUBLIC-KEYS { pk-ec }
}
id-alg-ecdhPop-static-sha512-hmac-sha512 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 28
}
sa-ecdhPop-sha512-hmac-sha512 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-ecdhPop-static-sha512-hmac-sha512
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-ec }
}
In the above ASN.1 the following items are defined:
sa-ecdhPop-static-sha224-hmac-sha224
An ASN.1 SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DhSigStatic represents the signature value and the parameters MUST
be absent.
id-ecdhPop-static-sha224-hmac-sha224
This OID identifies the Static ECDH POP algorithm that uses
SHA-224 as the KDF and HMAC-SHA224 as the MAC function.
sa-ecdhPop-static-sha256-hmac-sha256
An ASN.1 SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DhSigStatic represents the signature value and the parameters MUST
be absent.
id-ecdhPop-static-sha256-hmac-sha256
This OID identifies the Static ECDH POP algorithm that uses
SHA-256 as the KDF and HMAC-SHA256 as the MAC function.
sa-ecdhPop-static-sha384-hmac-sha384
An ASN.1 SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DhSigStatic represents the signature value and the parameters MUST
be absent.
id-ecdhPop-static-sha384-hmac-sha384
This OID identifies the Static ECDH POP algorithm that uses
SHA-384 as the KDF and HMAC-SHA384 as the MAC function.
sa-ecdhPop-static-sha512-hmac-sha512
Schaad & PrafullchandraExpires September 28, 2013 [Page 18]
Internet-Draft DH POP Algorithms March 2013
An ASN.1 SIGNATURE-ALGORITHM object that associates together the
information describing this signature algorithm. The structure
DhSigStatic represents the signature value and the parameters MUST
be absent.
id-ecdhPop-static-sha512-hmac-sha512
This OID identifies the Static ECDH POP algorithm that uses
SHA-512 as the KDF and HMAC-SHA512 as the MAC function.
7. Security Considerations
None of the algorithms defined in this document are meant for use in
general purpose situations. These algorithms are designed and
purposed solely for use in doing Proof-of-Possession with PKCS#10 and
CRMF constructs.
In the static DH POP and static ECDH POP algorithms, an appropriate
value can be produced by either party. Thus these algorithms only
provide integrity and not origination service. The Discrete
Logarithm algorithm provides both integrity checking and origination
checking.
All the security in this system is provided by the secrecy of the
private keying material. If either sender or recipient private keys
are disclosed, all messages sent or received using that key are
compromised. Similarly, loss of the private key results in an
inability to read messages sent using that key.
Selection of parameters can be of paramount importance. In the
selection of parameters one must take into account the community/
group of entities that one wishes to be able to communicate with. In
choosing a set of parameters one must also be sure to avoid small
groups. [FIPS-186] Appendixes 2 and 3 contain information on the
selection of parameters for DH. [RFC6090] Section 10 contains
information on the selection of parameter for ECC. The practices
outlined in these documents will lead to better selection of
parameters.
8. IANA Considerations
This document contains no IANA considerations.
9. References
9.1. Normative References
Schaad & PrafullchandraExpires September 28, 2013 [Page 19]
Internet-Draft DH POP Algorithms March 2013
[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
Hashing for Message Authentication", RFC 2104, February
1997.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2631] Rescorla, E., "Diffie-Hellman Key Agreement Method", RFC
2631, June 1999.
[RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
Request Syntax Specification Version 1.7", RFC 2986,
November 2000.
[RFC4231] Nystrom, M., "Identifiers and Test Vectors for HMAC-
SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",
RFC 4231, December 2005.
[RFC6234] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
(SHA and SHA-based HMAC and HKDF)", RFC 6234, May 2011.
9.2. Informative References
[CRMF] Schaad, J., "Internet X.509 Public Key Infrastructure
Certificate Request Message Format (CRMF)", RFC 4211,
September 2005.
[FIPS-186]
, "Digital Signature Standard", Federal Information
Processing Standards Publication 186, May 1994.
[RFC2875] Prafullchandra, H. and J. Schaad, "Diffie-Hellman Proof-
of-Possession Algorithms", RFC 2875, July 2000.
[RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms and
Identifiers for the Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 3279, April 2002.
[RFC5912] Hoffman, P. and J. Schaad, "New ASN.1 Modules for the
Public Key Infrastructure Using X.509 (PKIX)", RFC 5912,
June 2010.
[RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
Curve Cryptography Algorithms", RFC 6090, February 2011.
Appendix A. ASN.1 Modules
Schaad & PrafullchandraExpires September 28, 2013 [Page 20]
Internet-Draft DH POP Algorithms March 2013
A.1. 2008 ASN.1 Module
This appendix contains an ASN.1 module which is conformant with the
2008 version of ASN.1. This module references the object classes
defined by [RFC5912] to more completely describe all of the
associations between the elements defined in this document. Where a
difference exists between the module in this section and the 1988
module, the 2008 module is the definitive module.
DH-Sign
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-dhSign-2012-08(80) }
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
--EXPORTS ALL
-- The types and values defined in this module are exported for use
-- in the other ASN.1 modules. Other applications may use them
-- for their own purposes.
IMPORTS
SIGNATURE-ALGORITHM
FROM AlgorithmInformation-2009
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-algorithmInformation-02(58) }
IssuerAndSerialNumber, MessageDigest
FROM CryptographicMessageSyntax-2010
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-9(9) smime(16) modules(0) id-mod-cms-2009(58) }
DSA-Sig-Value, DomainParameters, ECDSA-Sig-Value,
mda-sha1, mda-sha224, mda-sha256, mda-sha384, mda-sha512,
pk-dh, pk-ec
FROM PKIXAlgs-2009
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkix1-algorithms2008-02(56) }
id-pkix
FROM PKIX1Explicit-2009
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkix1-explicit-02(51) };
DhSigStatic ::= SEQUENCE {
Schaad & PrafullchandraExpires September 28, 2013 [Page 21]
Internet-Draft DH POP Algorithms March 2013
issuerAndSerial IssuerAndSerialNumber OPTIONAL,
hashValue MessageDigest
}
sa-dhPop-static-sha1-hmac-sha1 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-dhPop-static-sha1-hmac-sha1
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
id-dh-sig-hmac-sha1 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 3
}
id-dhPop-static-sha1-hmac-sha1 OBJECT IDENTIFIER ::=
id-dh-sig-hmac-sha1
sa-dhPop-static-sha224-hmac-sha224 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-static-sha224-hmac-sha224
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-static-sha224-hmac-sha224 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 15
}
sa-dhPop-static-sha256-hmac-sha256 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-static-sha256-hmac-sha256
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-static-sha256-hmac-sha256 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 16
}
sa-dhPop-static-sha384-hmac-sha384 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-static-sha384-hmac-sha384
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-static-sha384-hmac-sha384 OBJECT IDENTIFIER ::= {
Schaad & PrafullchandraExpires September 28, 2013 [Page 22]
Internet-Draft DH POP Algorithms March 2013
id-pkix id-alg(6) 17
}
sa-dhPop-static-sha512-hmac-sha512 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-static-sha512-hmac-sha512
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-static-sha512-hmac-sha512 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 18
}
sa-dhPop-SHA1 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dh-pop
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha1 }
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-sha1 OBJECT IDENTIFIER ::= id-alg-dh-pop
id-alg-dh-pop OBJECT IDENTIFIER ::= { id-pkix id-alg(6) 4 }
sa-dhPop-sha224 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-sha224
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha224 }
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-sha224 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 5
}
sa-dhPop-sha256 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-sha256
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha256 }
PUBLIC-KEYS { pk-dh }
}
Schaad & PrafullchandraExpires September 28, 2013 [Page 23]
Internet-Draft DH POP Algorithms March 2013
id-alg-dhPop-sha256 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 6
}
sa-dhPop-sha384 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-sha384
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha384 }
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-sha384 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 7
}
sa-dhPop-sha512 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-dhPop-sha512
VALUE DSA-Sig-Value
PARAMS TYPE DomainParameters ARE preferredAbsent
HASHES { mda-sha512 }
PUBLIC-KEYS { pk-dh }
}
id-alg-dhPop-sha512 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 8
}
id-alg-ecdhPop-static-sha224-hmac-sha224 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 25
}
sa-ecdhPop-sha224-hmac-sha224 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-ecdhPop-static-sha224-hmac-sha224
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-ec }
}
id-alg-ecdhPop-static-sha256-hmac-sha256 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 26
}
sa-ecdhPop-sha256-hmac-sha256 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-ecdhPop-static-sha256-hmac-sha256
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-ec }
Schaad & PrafullchandraExpires September 28, 2013 [Page 24]
Internet-Draft DH POP Algorithms March 2013
}
id-alg-ecdhPop-static-sha384-hmac-sha384 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 27
}
sa-ecdhPop-sha384-hmac-sha384 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-ecdhPop-static-sha384-hmac-sha384
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-ec }
}
id-alg-ecdhPop-static-sha512-hmac-sha512 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 28
}
sa-ecdhPop-sha512-hmac-sha512 SIGNATURE-ALGORITHM ::= {
IDENTIFIER id-alg-ecdhPop-static-sha512-hmac-sha512
VALUE DhSigStatic
PARAMS ARE absent
PUBLIC-KEYS { pk-ec }
}
END
A.2. 1988 ASN.1 Module
This appendix contains an ASN.1 module which is conformant with the
1988 version of ASN.1 represents an informational version of the
ASN.1 module for this document. Where a difference exists between
the module in this section and the 2008 module, the 2008 module is
the definitive module.
DH-Sign
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-dhSign-2012-88(79) }
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
--EXPORTS ALL
-- The types and values defined in this module are exported for use
-- in the other ASN.1 modules. Other applications may use them
-- for their own purposes.
Schaad & PrafullchandraExpires September 28, 2013 [Page 25]
Internet-Draft DH POP Algorithms March 2013
IMPORTS
IssuerAndSerialNumber, MessageDigest
FROM CryptographicMessageSyntax2004
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-9(9) smime(16) modules(0) cms-2004(24) }
id-pkix
FROM PKIX1Explicit88
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-pkix1-explicit(18) }
Dss-Sig-Value, DomainParameters
FROM PKIX1Algorithms88
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkix1-algorithms(17) };
id-dh-sig-hmac-sha1 OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 3}
DhSigStatic ::= SEQUENCE {
issuerAndSerial IssuerAndSerialNumber OPTIONAL,
hashValue MessageDigest
}
id-alg-dh-pop OBJECT IDENTIFIER ::= { id-pkix id-alg(6) 4 }
id-dhPop-static-sha1-hmac-sha1 OBJECT IDENTIFIER ::=
id-dh-sig-hmac-sha1
id-alg-dhPop-static-sha224-hmac-sha224 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 15 }
id-alg-dhPop-static-sha256-hmac-sha256 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 16 }
id-alg-dhPop-static-sha384-hmac-sha384 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 17 }
id-alg-dhPop-static-sha512-hmac-sha512 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 18 }
id-alg-dhPop-sha1 OBJECT IDENTIFIER ::= id-alg-dh-pop
id-alg-dhPop-sha224 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 5 }
Schaad & PrafullchandraExpires September 28, 2013 [Page 26]
Internet-Draft DH POP Algorithms March 2013
id-alg-dhPop-sha256 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 6 }
id-alg-dhPop-sha384 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 7 }
id-alg-dhPop-sha512 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 8 }
id-alg-ecdhPop-static-sha224-hmac-sha224 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 25 }
id-alg-ecdhPop-static-sha256-hmac-sha256 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 26 }
id-alg-ecdhPop-static-sha384-hmac-sha384 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 27 }
id-alg-ecdhPop-static-sha512-hmac-sha512 OBJECT IDENTIFIER ::= {
id-pkix id-alg(6) 28 }
END
Appendix B. Example of Static DH Proof-of-Possession
The following example follows the steps described earlier in section
4.
Step 1: Establishing common Diffie-Hellman parameters. Assume the
parameters are as in the DER encoded certificate. The certificate
contains a DH public key signed by a CA with a DSA signing key.
0 30 939: SEQUENCE {
4 30 872: SEQUENCE {
8 A0 3: [0] {
10 02 1: INTEGER 2
: }
13 02 6: INTEGER
: 00 DA 39 B6 E2 CB
21 30 11: SEQUENCE {
23 06 7: OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3)
32 05 0: NULL
: }
34 30 72: SEQUENCE {
36 31 11: SET {
Schaad & PrafullchandraExpires September 28, 2013 [Page 27]
Internet-Draft DH POP Algorithms March 2013
38 30 9: SEQUENCE {
40 06 3: OBJECT IDENTIFIER countryName (2 5 4 6)
45 13 2: PrintableString 'US'
: }
: }
49 31 17: SET {
51 30 15: SEQUENCE {
53 06 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
58 13 8: PrintableString 'XETI Inc'
: }
: }
68 31 16: SET {
70 30 14: SEQUENCE {
72 06 3: OBJECT IDENTIFIER organizationalUnitName (2 5 4
11)
77 13 7: PrintableString 'Testing'
: }
: }
86 31 20: SET {
88 30 18: SEQUENCE {
90 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)
95 13 11: PrintableString 'Root DSA CA'
: }
: }
: }
108 30 30: SEQUENCE {
110 17 13: UTCTime '990914010557Z'
125 17 13: UTCTime '991113010557Z'
: }
140 30 70: SEQUENCE {
142 31 11: SET {
144 30 9: SEQUENCE {
146 06 3: OBJECT IDENTIFIER countryName (2 5 4 6)
151 13 2: PrintableString 'US'
: }
: }
155 31 17: SET {
157 30 15: SEQUENCE {
159 06 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
164 13 8: PrintableString 'XETI Inc'
: }
: }
174 31 16: SET {
176 30 14: SEQUENCE {
178 06 3: OBJECT IDENTIFIER organizationalUnitName (2 5 4
11)
183 13 7: PrintableString 'Testing'
: }
Schaad & PrafullchandraExpires September 28, 2013 [Page 28]
Internet-Draft DH POP Algorithms March 2013
: }
192 31 18: SET {
194 30 16: SEQUENCE {
196 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)
201 13 9: PrintableString 'DH TestCA'
: }
: }
: }
212 30 577: SEQUENCE {
216 30 438: SEQUENCE {
220 06 7: OBJECT IDENTIFIER dhPublicKey (1 2 840 10046 2 1)
229 30 425: SEQUENCE {
233 02 129: INTEGER
: 00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7
: C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82
: F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21
: 51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68
: 5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72
: 8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2
: 32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02
: D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85
: 27
365 02 128: INTEGER
: 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
: 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
: 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
: 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
: 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
: 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
: 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
: 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
496 02 33: INTEGER
: 00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94
: B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30
: FB
531 02 97: INTEGER
: 00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7
: B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D
: AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39
: 40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76
: B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56
: 68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2
: 92
630 30 26: SEQUENCE {
632 03 21: BIT STRING 0 unused bits
: 1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB
: 09 E4 98 34
655 02 1: INTEGER 55
Schaad & PrafullchandraExpires September 28, 2013 [Page 29]
Internet-Draft DH POP Algorithms March 2013
: }
: }
: }
658 03 132: BIT STRING 0 unused bits
: 02 81 80 5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1
: E6 A7 01 4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0
: 46 79 50 A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69
: B7 11 A1 C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22
: 4D 0A 11 6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF
: D8 59 92 C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21
: E1 AF 7A 3A CF 20 0A B4 2C 69 5F CF 79 67 20 31
: 4D F2 C6 ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0
: 8F C5 1A
: }
793 A3 85: [3] {
795 30 83: SEQUENCE {
797 30 29: SEQUENCE {
799 06 3: OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29 14)
804 04 22: OCTET STRING
: 04 14 80 DF 59 88 BF EB 17 E1 AD 5E C6 40 A3 42
: E5 AC D3 B4 88 78
: }
828 30 34: SEQUENCE {
830 06 3: OBJECT IDENTIFIER authorityKeyIdentifier (2 5 29
35)
835 01 1: BOOLEAN TRUE
838 04 24: OCTET STRING
: 30 16 80 14 6A 23 37 55 B9 FD 81 EA E8 4E D3 C9
: B7 09 E5 7B 06 E3 68 AA
: }
864 30 14: SEQUENCE {
866 06 3: OBJECT IDENTIFIER keyUsage (2 5 29 15)
871 01 1: BOOLEAN TRUE
874 04 4: OCTET STRING
: 03 02 03 08
: }
: }
: }
: }
880 30 11: SEQUENCE {
882 06 7: OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3)
891 05 0: NULL
: }
893 03 48: BIT STRING 0 unused bits
: 30 2D 02 14 7C 6D D2 CA 1E 32 D1 30 2E 29 66 BC
: 06 8B 60 C7 61 16 3B CA 02 15 00 8A 18 DD C1 83
: 58 29 A2 8A 67 64 03 92 AB 02 CE 00 B5 94 6A
: }
Schaad & PrafullchandraExpires September 28, 2013 [Page 30]
Internet-Draft DH POP Algorithms March 2013
Step 2. End Entity/User generates a Diffie-Hellman key-pair using
the parameters from the CA certificate.
EE DH public key:
Y: 13 63 A1 85 04 8C 46 A8 88 EB F4 5E A8 93 74 AE
FD AE 9E 96 27 12 65 C4 4C 07 06 3E 18 FE 94 B8
A8 79 48 BD 2E 34 B6 47 CA 04 30 A1 EC 33 FD 1A
0B 2D 9E 50 C9 78 0F AE 6A EC B5 6B 6A BE B2 5C
DA B2 9F 78 2C B9 77 E2 79 2B 25 BF 2E 0B 59 4A
93 4B F8 B3 EC 81 34 AE 97 47 52 E0 A8 29 98 EC
D1 B0 CA 2B 6F 7A 8B DB 4E 8D A5 15 7E 7E AF 33
62 09 9E 0F 11 44 8C C1 8D A2 11 9E 53 EF B2 E8
EE DH private key:
X: 32 CC BD B4 B7 7C 44 26 BB 3C 83 42 6E 7D 1B 00
86 35 09 71 07 A0 A4 76 B8 DB 5F EC 00 CE 6F C3
Step 3. Compute the shared secret ZZ
56 b6 01 39 42 8e 09 16 30 b0 31 4d 12 90 af 03
c7 92 65 c2 9c ba 88 bb 0a d5 94 02 ed 6f 54 cb
22 e5 94 b4 d6 60 72 bc f6 a5 2b 18 8d df 28 72
ac e0 41 dd 3b 03 2a 12 9e 5d bd 72 a0 1e fb 6b
ee c5 b2 16 59 ee 12 00 3b c8 e0 cb c5 08 8e 2d
40 5f 2d 37 62 8c 4f bb 49 76 69 3c 9e fc 2c f7
f9 50 c1 b9 f7 01 32 4c 96 b9 c3 56 c0 2c 1b 77
3f 2f 36 e8 22 c8 2e 07 76 d0 4f 7f aa d5 c0 59
Step 4. Compute K and the signature.
LeadingInfo: DER encoded Subject/Requestor DN (as in the generated
Certificate Signing Request)
30 46 31 0B 30 09 06 03 55 04 06 13 02 55 53 31
11 30 0F 06 03 55 04 0A 13 08 58 45 54 49 20 49
6E 63 31 10 30 0E 06 03 55 04 0B 13 07 54 65 73
74 69 6E 67 31 12 30 10 06 03 55 04 03 13 09 44
48 20 54 65 73 74 43 41
TrailingInfo: DER encoded Issuer/Recipient DN (from the certificate
described in step 1)
Schaad & PrafullchandraExpires September 28, 2013 [Page 31]
Internet-Draft DH POP Algorithms March 2013
30 48 31 0B 30 09 06 03 55 04 06 13 02 55 53 31
11 30 0F 06 03 55 04 0A 13 08 58 45 54 49 20 49
6E 63 31 10 30 0E 06 03 55 04 0B 13 07 54 65 73
74 69 6E 67 31 14 30 12 06 03 55 04 03 13 0B 52
6F 6F 74 20 44 53 41 20 43 41
K:
B1 91 D7 DB 4F C5 EF EF AC 9A C5 44 5A 6D 42 28
DC 70 7B DA
TBS: the "text" for computing the SHA-1 HMAC.
30 82 02 98 02 01 00 30 4E 31 0B 30 09 06 03 55
04 06 13 02 55 53 31 11 30 0F 06 03 55 04 0A 13
08 58 45 54 49 20 49 6E 63 31 10 30 0E 06 03 55
04 0B 13 07 54 65 73 74 69 6E 67 31 1A 30 18 06
03 55 04 03 13 11 50 4B 49 58 20 45 78 61 6D 70
6C 65 20 55 73 65 72 30 82 02 41 30 82 01 B6 06
07 2A 86 48 CE 3E 02 01 30 82 01 A9 02 81 81 00
94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7 C5
A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82 F5
D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21 51
63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68 5B
79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72 8A
F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2 32
E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02 D7
B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85 27
02 81 80 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87
53 3F 90 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5
0C 53 D4 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6
1B 7F 57 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31
7A 48 B6 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69
D9 9B DE 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33
51 C8 F1 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31
15 26 48 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E
DA D1 CD 02 21 00 E8 72 FA 96 F0 11 40 F5 F2 DC
FD 3B 5D 78 94 B1 85 01 E5 69 37 21 F7 25 B9 BA
71 4A FC 60 30 FB 02 61 00 A3 91 01 C0 A8 6E A4
4D A0 56 FC 6C FE 1F A7 B0 CD 0F 94 87 0C 25 BE
97 76 8D EB E5 A4 09 5D AB 83 CD 80 0B 35 67 7F
0C 8E A7 31 98 32 85 39 40 9D 11 98 D8 DE B8 7F
86 9B AF 8D 67 3D B6 76 B4 61 2F 21 E1 4B 0E 68
FF 53 3E 87 DD D8 71 56 68 47 DC F7 20 63 4B 3C
5F 78 71 83 E6 70 9E E2 92 30 1A 03 15 00 1C D5
3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB 09 E4
98 34 02 01 37 03 81 84 00 02 81 80 13 63 A1 85
Schaad & PrafullchandraExpires September 28, 2013 [Page 32]
Internet-Draft DH POP Algorithms March 2013
04 8C 46 A8 88 EB F4 5E A8 93 74 AE FD AE 9E 96
27 12 65 C4 4C 07 06 3E 18 FE 94 B8 A8 79 48 BD
2E 34 B6 47 CA 04 30 A1 EC 33 FD 1A 0B 2D 9E 50
C9 78 0F AE 6A EC B5 6B 6A BE B2 5C DA B2 9F 78
2C B9 77 E2 79 2B 25 BF 2E 0B 59 4A 93 4B F8 B3
EC 81 34 AE 97 47 52 E0 A8 29 98 EC D1 B0 CA 2B
6F 7A 8B DB 4E 8D A5 15 7E 7E AF 33 62 09 9E 0F
11 44 8C C1 8D A2 11 9E 53 EF B2 E8
Certification Request:
0 30 793: SEQUENCE {
4 30 664: SEQUENCE {
8 02 1: INTEGER 0
11 30 78: SEQUENCE {
13 31 11: SET {
15 30 9: SEQUENCE {
17 06 3: OBJECT IDENTIFIER countryName (2 5 4 6)
22 13 2: PrintableString 'US'
: }
: }
26 31 17: SET {
28 30 15: SEQUENCE {
30 06 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
35 13 8: PrintableString 'XETI Inc'
: }
: }
45 31 16: SET {
47 30 14: SEQUENCE {
49 06 3: OBJECT IDENTIFIER organizationalUnitName (2 5 4
11)
54 13 7: PrintableString 'Testing'
: }
: }
63 31 26: SET {
65 30 24: SEQUENCE {
67 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)
72 13 17: PrintableString 'PKIX Example User'
: }
: }
: }
91 30 577: SEQUENCE {
95 30 438: SEQUENCE {
99 06 7: OBJECT IDENTIFIER dhPublicKey (1 2 840 10046 2 1)
108 30 425: SEQUENCE {
112 02 129: INTEGER
: 00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7
Schaad & PrafullchandraExpires September 28, 2013 [Page 33]
Internet-Draft DH POP Algorithms March 2013
: C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82
: F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21
: 51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68
: 5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72
: 8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2
: 32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02
: D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85
: 27
244 02 128: INTEGER
: 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
: 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
: 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
: 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
: 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
: 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
: 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
: 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
375 02 33: INTEGER
: 00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94
: B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30
: FB
410 02 97: INTEGER
: 00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7
: B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D
: AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39
: 40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76
: B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56
: 68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2
: 92
509 30 26: SEQUENCE {
511 03 21: BIT STRING 0 unused bits
: 1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E
: DB 09 E4 98 34
534 02 1: INTEGER 55
: }
: }
: }
537 03 132: BIT STRING 0 unused bits
: 02 81 80 13 63 A1 85 04 8C 46 A8 88 EB F4 5E A8
: 93 74 AE FD AE 9E 96 27 12 65 C4 4C 07 06 3E 18
: FE 94 B8 A8 79 48 BD 2E 34 B6 47 CA 04 30 A1 EC
: 33 FD 1A 0B 2D 9E 50 C9 78 0F AE 6A EC B5 6B 6A
: BE B2 5C DA B2 9F 78 2C B9 77 E2 79 2B 25 BF 2E
: 0B 59 4A 93 4B F8 B3 EC 81 34 AE 97 47 52 E0 A8
: 29 98 EC D1 B0 CA 2B 6F 7A 8B DB 4E 8D A5 15 7E
: 7E AF 33 62 09 9E 0F 11 44 8C C1 8D A2 11 9E 53
: EF B2 E8
: }
Schaad & PrafullchandraExpires September 28, 2013 [Page 34]
Internet-Draft DH POP Algorithms March 2013
: }
672 30 12: SEQUENCE {
674 06 8: OBJECT IDENTIFIER dh-sig-hmac-sha1 (1 3 6 1 5 5 7 6 3)
684 05 0: NULL
: }
686 03 109: BIT STRING 0 unused bits
: 30 6A 30 52 30 48 31 0B 30 09 06 03 55 04 06 13
: 02 55 53 31 11 30 0F 06 03 55 04 0A 13 08 58 45
: 54 49 20 49 6E 63 31 10 30 0E 06 03 55 04 0B 13
: 07 54 65 73 74 69 6E 67 31 14 30 12 06 03 55 04
: 03 13 0B 52 6F 6F 74 20 44 53 41 20 43 41 02 06
: 00 DA 39 B6 E2 CB 04 14 2D 05 77 FE 5E 8F 65 F5
: AF AD C9 5C 9B 02 C0 A8 88 29 61 63
: }
Signature verification requires CA's private key, the CA certificate
and the generated Certification Request.
CA DH private key:
x: 3E 5D AD FD E5 F4 6B 1B 61 5E 18 F9 0B 84 74 a7
52 1E D6 92 BC 34 94 56 F3 0C BE DA 67 7A DD 7D
Appendix C. Example of Discrete Log Signature
Step 1. Generate a Diffie-Hellman Key with length of q being 256
bits.
p:
94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7 C5
A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82 F5
D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21 51
63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68 5B
79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72 8A
F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2 32
E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02 D7
B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85 27
q:
E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94 B1
85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30 FB
g:
26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
Schaad & PrafullchandraExpires September 28, 2013 [Page 35]
Internet-Draft DH POP Algorithms March 2013
86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
j:
A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7 B0
CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D AB
83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39 40
9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76 B4
61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56 68
47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2 92
y:
5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1 E6 A7 01
4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0 46 79 50
A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69 B7 11 A1
C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22 4D 0A 11
6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF D8 59 92
C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21 E1 AF 7A
3A CF 20 0A B4 2C 69 5F CF 79 67 20 31 4D F2 C6
ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0 8F C5 1A
seed:
1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB
09 E4 98 34
C:
00000037
x:
3E 5D AD FD E5 F4 6B 1B 61 5E 18 F9 0B 84 74 a7
52 1E D6 92 BC 34 94 56 F3 0C BE DA 67 7A DD 7D
Step 2. Form the value to be signed and hash with SHA1. The result
of the hash for this example is:
5f a2 69 b6 4b 22 91 22 6f 4c fe 68 ec 2b d1 c6
d4 21 e5 2c
Step 3. The hash value needs to be expanded since |q| = 256. This
is done by hashing the hash with SHA1 and appending it to the
original hash. The value after this step is:
Schaad & PrafullchandraExpires September 28, 2013 [Page 36]
Internet-Draft DH POP Algorithms March 2013
5f a2 69 b6 4b 22 91 22 6f 4c fe 68 ec 2b d1 c6
d4 21 e5 2c 64 92 8b c9 5e 34 59 70 bd 62 40 ad
6f 26 3b f7 1c a3 b2 cb
Next the first 255 bits of this value are taken to be the resulting
"hash" value. Note in this case a shift of one bit right is done
since the result is to be treated as an integer:
2f d1 34 db 25 91 48 91 37 a6 7f 34 76 15 e8 e3
6a 10 f2 96 32 49 45 e4 af 1a 2c b8 5e b1 20 56
Step 4. The signature value is computed. In this case you get the
values
r:
A1 B5 B4 90 01 34 6B A0 31 6A 73 F5 7D F6 5C 14
43 52 D2 10 BF 86 58 87 F7 BC 6E 5A 77 FF C3 4B
s:
59 40 45 BC 6F 0D DC FF 9D 55 40 1E C4 9E 51 3D
66 EF B2 FF 06 40 9A 39 68 75 81 F7 EC 9E BE A1
The encoded signature value is then:
30 45 02 21 00 A1 B5 B4 90 01 34 6B A0 31 6A 73
F5 7D F6 5C 14 43 52 D2 10 BF 86 58 87 F7 BC 6E
5A 77 FF C3 4B 02 20 59 40 45 BC 6F 0D DC FF 9D
55 40 1E C4 9E 51 3D 66 EF B2 FF 06 40 9A 39 68
75 81 F7 EC 9E BE A1
Result:
30 82 02 c2 30 82 02 67 02 01 00 30 1b 31 19 30
17 06 03 55 04 03 13 10 49 45 54 46 20 50 4b 49
58 20 53 41 4d 50 4c 45 30 82 02 41 30 82 01 b6
06 07 2a 86 48 ce 3e 02 01 30 82 01 a9 02 81 81
00 94 84 e0 45 6c 7f 69 51 62 3e 56 80 7c 68 e7
c5 a9 9e 9e 74 74 94 ed 90 8c 1d c4 e1 4a 14 82
f5 d2 94 0c 19 e3 b9 10 bb 11 b9 e5 a5 fb 8e 21
51 63 02 86 aa 06 b8 21 36 b6 7f 36 df d1 d6 68
5b 79 7c 1d 5a 14 75 1f 6a 93 75 93 ce bb 97 72
8a f0 0f 23 9d 47 f6 d4 b3 c7 f0 f4 e6 f6 2b c2
32 e1 89 67 be 7e 06 ae f8 d0 01 6b 8b 2a f5 02
d7 b6 a8 63 94 83 b0 1b 31 7d 52 1a de e5 03 85
27 02 81 80 26 a6 32 2c 5a 2b d4 33 2b 5c dc 06
87 53 3f 90 06 61 50 38 3e d2 b9 7d 81 1c 12 10
Schaad & PrafullchandraExpires September 28, 2013 [Page 37]
Internet-Draft DH POP Algorithms March 2013
c5 0c 53 d4 64 d1 8e 30 07 08 8c dd 3f 0a 2f 2c
d6 1b 7f 57 86 d0 da bb 6e 36 2a 18 e8 d3 bc 70
31 7a 48 b6 4e 18 6e dd 1f 22 06 eb 3f ea d4 41
69 d9 9b de 47 95 7a 72 91 d2 09 7f 49 5c 3b 03
33 51 c8 f1 39 9a ff 04 d5 6e 7e 94 3d 03 b8 f6
31 15 26 48 95 a8 5c de 47 88 b4 69 3a 00 a7 86
9e da d1 cd 02 21 00 e8 72 fa 96 f0 11 40 f5 f2
dc fd 3b 5d 78 94 b1 85 01 e5 69 37 21 f7 25 b9
ba 71 4a fc 60 30 fb 02 61 00 a3 91 01 c0 a8 6e
a4 4d a0 56 fc 6c fe 1f a7 b0 cd 0f 94 87 0c 25
be 97 76 8d eb e5 a4 09 5d ab 83 cd 80 0b 35 67
7f 0c 8e a7 31 98 32 85 39 40 9d 11 98 d8 de b8
7f 86 9b af 8d 67 3d b6 76 b4 61 2f 21 e1 4b 0e
68 ff 53 3e 87 dd d8 71 56 68 47 dc f7 20 63 4b
3c 5f 78 71 83 e6 70 9e e2 92 30 1a 03 15 00 1c
d5 3a 0d 17 82 6d 0a 81 75 81 46 10 8e 3e db 09
e4 98 34 02 01 37 03 81 84 00 02 81 80 5f cf 39
ad 62 cf 49 8e d1 ce 66 e2 b1 e6 a7 01 4d 05 c2
77 c8 92 52 42 a9 05 a4 db e0 46 79 50 a3 fc 99
3d 3d a6 9b a9 ad bc 62 1c 69 b7 11 a1 c0 2a f1
85 28 f7 68 fe d6 8f 31 56 22 4d 0a 11 6e 72 3a
02 af 0e 27 aa f9 ed ce 05 ef d8 59 92 c0 18 d7
69 6e bd 70 b6 21 d1 77 39 21 e1 af 7a 3a cf 20
0a b4 2c 69 5f cf 79 67 20 31 4d f2 c6 ed 23 bf
c4 bb 1e d1 71 40 2c 07 d6 f0 8f c5 1a a0 00 30
0c 06 08 2b 06 01 05 05 07 06 04 05 00 03 47 00
30 44 02 20 54 d9 43 8d 0f 9d 42 03 d6 09 aa a1
9a 3c 17 09 ae bd ee b3 d1 a0 00 db 7d 8c b8 e4
56 e6 57 7b 02 20 44 89 b1 04 f5 40 2b 5f e7 9c
f9 a4 97 50 0d ad c3 7a a4 2b b2 2d 5d 79 fb 38
8a b4 df bb 88 bc
Decoded Version of result:
0 30 707: SEQUENCE {
4 30 615: SEQUENCE {
8 02 1: INTEGER 0
11 30 27: SEQUENCE {
13 31 25: SET {
15 30 23: SEQUENCE {
17 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)
22 13 16: PrintableString 'IETF PKIX SAMPLE'
: }
: }
: }
40 30 577: SEQUENCE {
44 30 438: SEQUENCE {
Schaad & PrafullchandraExpires September 28, 2013 [Page 38]
Internet-Draft DH POP Algorithms March 2013
48 06 7: OBJECT IDENTIFIER dhPublicNumber (1 2 840 10046 2
1)
57 30 425: SEQUENCE {
61 02 129: INTEGER
: 00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7
: C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82
: F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21
: 51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68
: 5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72
: 8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2
: 32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02
: D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85
: 27
193 02 128: INTEGER
: 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
: 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
: 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
: 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
: 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
: 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
: 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
: 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
324 02 33: INTEGER
: 00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94
: B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30
: FB
359 02 97: INTEGER
: 00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7
: B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D
: AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39
: 40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76
: B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56
: 68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2
: 92
458 30 26: SEQUENCE {
460 03 21: BIT STRING 0 unused bits
: 1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB
: 09 E4 98 34
483 02 1: INTEGER 55
: }
: }
: }
486 03 132: BIT STRING 0 unused bits
: 02 81 80 5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1
: E6 A7 01 4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0
: 46 79 50 A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69
: B7 11 A1 C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22
: 4D 0A 11 6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF
Schaad & PrafullchandraExpires September 28, 2013 [Page 39]
Internet-Draft DH POP Algorithms March 2013
: D8 59 92 C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21
: E1 AF 7A 3A CF 20 0A B4 2C 69 5F CF 79 67 20 31
: 4D F2 C6 ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0
: 8F C5 1A
: }
621 A0 0: [0]
: }
623 30 12: SEQUENCE {
625 06 8: OBJECT IDENTIFIER '1 3 6 1 5 5 7 6 4'
635 05 0: NULL
: }
637 03 72: BIT STRING 0 unused bits
: 30 45 02 21 00 A1 B5 B4 90 01 34 6B A0 31 6A 73
: F5 7D F6 5C 14 43 52 D2 10 BF 86 58 87 F7 BC 6E
: 5A 77 FF C3 4B 02 20 59 40 45 BC 6F 0D DC FF 9D
: 55 40 1E C4 9E 51 3D 66 EF B2 FF 06 40 9A 39 68
: 75 81 F7 EC 9E BE A1
: }
Authors' Addresses
Jim Schaad
Soaring Hawk Consulting
Email: ietf@augustcellars.com
Hemma Prafullchandra
Hy-Trust
Schaad & PrafullchandraExpires September 28, 2013 [Page 40]