Internet DRAFT - draft-schmutzer-bess-bitstream-vpws-signalling
draft-schmutzer-bess-bitstream-vpws-signalling
Network Working Group S. Gringeri
Internet-Draft J. Whittaker
Intended status: Standards Track Verizon
Expires: 25 April 2024 C. Schmutzer, Ed.
B. Vasudevan
P. Brissette
Cisco Systems, Inc.
23 October 2023
Ethernet VPN Signalling Extensions for Bit-stream VPWS
draft-schmutzer-bess-bitstream-vpws-signalling-00
Abstract
This document specifies the mechanisms to allow for dynamic
signalling of Virtual Private Wire Services (VPWS) carrying bit-
stream signals over Packet Switched Networks (PSN).
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 25 April 2024.
Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the
document authors. All rights reserved.
Gringeri, et al. Expires 25 April 2024 [Page 1]
Internet-Draft Bitstream EVPN-VPWS October 2023
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.
Table of Contents
1. Introduction and Motivation . . . . . . . . . . . . . . . . . 3
2. Requirements Notation . . . . . . . . . . . . . . . . . . . . 4
3. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4
4. Solution Requirements . . . . . . . . . . . . . . . . . . . . 6
5. Service Types . . . . . . . . . . . . . . . . . . . . . . . . 7
5.1. Ethernet Service Types . . . . . . . . . . . . . . . . . 7
5.2. Fibre Channel Service Types . . . . . . . . . . . . . . . 8
5.3. OTN Service Types . . . . . . . . . . . . . . . . . . . . 8
5.4. TDM Service Types . . . . . . . . . . . . . . . . . . . . 9
5.5. SONET/SDH Service Types . . . . . . . . . . . . . . . . . 9
6. Reuse of existing BGP EVPN-VPWS Capabilities . . . . . . . . 10
7. BGP Bitstream Attribute . . . . . . . . . . . . . . . . . . . 10
7.1. PW Type TLV . . . . . . . . . . . . . . . . . . . . . . . 11
7.2. PLE/CEP/TDM Bit-rate TLV . . . . . . . . . . . . . . . . 12
7.3. PLE/CEP Options TLV . . . . . . . . . . . . . . . . . . . 13
7.4. TDM options TLV . . . . . . . . . . . . . . . . . . . . . 14
7.5. PLE/CEP/TDM Payload Bytes TLV . . . . . . . . . . . . . . 15
7.6. Endpoint-ID TLV . . . . . . . . . . . . . . . . . . . . . 16
8. Control Plane Operations . . . . . . . . . . . . . . . . . . 16
8.1. VPWS Setup and Teardown . . . . . . . . . . . . . . . . . 17
8.2. Misconnection Handling . . . . . . . . . . . . . . . . . 18
8.3. Failure Scenarios . . . . . . . . . . . . . . . . . . . . 18
8.3.1. Single-homed CEs . . . . . . . . . . . . . . . . . . 18
8.3.2. Multi-homed CEs . . . . . . . . . . . . . . . . . . . 18
9. Security Considerations . . . . . . . . . . . . . . . . . . . 19
10. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 20
11. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 20
12. References . . . . . . . . . . . . . . . . . . . . . . . . . 20
12.1. Normative References . . . . . . . . . . . . . . . . . . 20
12.2. Informative References . . . . . . . . . . . . . . . . . 21
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 22
Gringeri, et al. Expires 25 April 2024 [Page 2]
Internet-Draft Bitstream EVPN-VPWS October 2023
1. Introduction and Motivation
Virtual Private Wire Service (VPWS) is a widely deployed technology
for providing point-to-point (P2P) services for various layer 2 and
also layer 1 technologies. Initially VPWS were define in the
Pseudowire Emulation Edge-to-Edge (PWE3) architecture [RFC3985] for
Frame Relay, ATM, HDLC, PPP, Ethernet, TDM and SONET/SDH.
How Ethernet VPWS can be signalled using Ethernet VPN has already
been specified in [RFC8214]. This document is defining necessary
signalling extension for Ethernet VPN to also support the following
bit stream VPWS instance types:
* TDM services using SAToP [RFC4553]
* TDM services using CESoP [RFC5086]
* SONET/SDH services using CEP [RFC4842]
* Private line services using PLE [I-D.ietf-pals-ple]
A generic VPWS reference model similar to the one defined in
[RFC3985] and [I-D.ietf-pals-ple] is shown in Figure 1. Data
received from a CEs is encapsulated by PEs into the respective VPWS
established between the attachment circuits of the local and remote
PE and transmitted across the Packet Switched Network (PSN) using a
PSN tunnel.
CE1 & CE2 physical CE3 & CE4 physical
interfaces interfaces
| <------- PSN tunnels -----> |
| +-----------------------------+ |
| | | |
+---+ v +---+ +---+ v +---+
|CE1|-----| |.......... VPWS1 ........|PE2|-----|CE3|
+---+ | | +---+ +---+
|PE1| packet switched network |
+---- | | +---+ +---+
|CE2|-----| |.......... VPWS2 ........|PE3|-----|CE4|
+---+ +---+ +---+ +---+
^ | | ^
| +-----------------------------+ |
| |
attachment attachment
circuits circuits
| |
|<------ emulated services ------>|
Gringeri, et al. Expires 25 April 2024 [Page 3]
Internet-Draft Bitstream EVPN-VPWS October 2023
Figure 1: VPWS Reference Model
2. Requirements Notation
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
3. Terminology
* AIS - Alarm Indication Signal
* AFI - Address Family Identifier
* ATM - Asynchronous Transfer Mode
* BGP - Border Gateway Protocol
* CBR - Constant Bit Rate
* CE - Customer Edge
* CEP - SONET/SDH Circuit Emulation over Packet
* CESoP - Structure-aware TDM Circuit Emulation Service over Packet
Switched Network
* DF - Designated Forwarder
* EAD - Ethernet Auto Discovery
* FC - Fibre Channel
* EBM - Equipped Bit Mask
* EVI - EVPN Instance
* EVPN - Ethernet Virtual Private Network
* HDLC - High-level Data Link Control
* LDP - Label Distribution Protocol
* MPLS - Multi Protocol Label Switching
* MTU - Maximum Transmission Unit
Gringeri, et al. Expires 25 April 2024 [Page 4]
Internet-Draft Bitstream EVPN-VPWS October 2023
* NDF - Non-Designated Forwarder
* NLRI - Network Layer Reachability Information
* OC - Optical Carrier
* ODUk - Optical Data Unit k
* PDH - Plesynchronous Digital Hierarchy
* PE - Provider Edge
* PLE - Private Line Emulation
* PPP - Point-to-Point Protocol
* PSN - Packet Switched Network
* PW - Pseudo Wire
* PWE3 - Pseudowire Emulation Edge-to-Edge
* P2P - Point-to-Point
* RTP - Realtime Transport Protocol
* SAFI - Subsequent Address Family Identifier
* SAToP - Structure Agnostic TDM over Packet
* SDH - Synchronous Digital Hierarchy
* SONET - Synchronous Optical Network
* SRv6 - Segment Routing over IPv6 Dataplane
* STM - Synchronous Transport Module
* STS - Synchronous Transport Signal
* TDM - Time Division Multiplexing
* TLV - Type Length Value
* UNE - Unequipped
* VC - Virtual Circuit
Gringeri, et al. Expires 25 April 2024 [Page 5]
Internet-Draft Bitstream EVPN-VPWS October 2023
* VPWS - Virtual Private Wire Service
* VT - Virtual Tributary
4. Solution Requirements
To avoid redefining PW types for [RFC8214] the notion of "PW type"
from [RFC8077] is maintained and only a new PW type for
[I-D.ietf-pals-ple] has been assigned by IANA.
* TBD1 - Private Line Emulation (PLE) over Packet
The concept of "CEP type" from [RFC5287] to distinguish different
connection types that use the same PW type is adopted. In this
document it is referred to as "PLE/CEP type". Two new connection
types are defined Section 7.3.
To unambiguously identify the rate of an attachment circuit, also the
concept of "CEP/TDM bit-rate" from [RFC5287] is adopted and called
"PLE/CEP/TDM bit-rate" herein.
The VPWS signalling requirements are as follows:
* Implementations MUST support MPLS as underlay PSN
* The VPWS instance MAY be signalled as SRv6 overlay service per
[RFC9252] leveraging on [RFC8986] using the End.DX2 function. In
such case, the implementation MUST support SRv6 as underlay PSN.
* The use of control word MUST be signalled, as defined in
[RFC4553], [RFC5086], [RFC4842] and [I-D.ietf-pals-ple].
* The PW type MUST be signalled and the PE nodes MUST validate that
the PW type is identical on both endpoint.
* For CEP [RFC4842] and PLE [I-D.ietf-pals-ple] the PLE/CEP type
MUST be signalled and the PE nodes MUST validate that the PLE/CEP
type is identical on both endpoints.
* The PLE/CEP/TDM bit-rate MUST be signalled if the attachment
circuit can not be unambiguously identified from the PW type alone
and the PE nodes MUST validate that the attachment circuit is
identical on both endpoints.
* A non-default payload size MAY be signalled. Both PE nodes MUST
validate that the payload size is identical on both endpoints.
Gringeri, et al. Expires 25 April 2024 [Page 6]
Internet-Draft Bitstream EVPN-VPWS October 2023
* A locally configured connection identifier as defined in
Section 7.6 SHOULD be sent to the remote PE node. A locally
configured expected identifier MAY be used to identify a
misconnection by comparing it with the identifier received from
the remote PE node.
* The multi-homed PE scenarios per [RFC7432] and [RFC8214] SHOULD be
supported where the load-balancing mode single-active MUST be
supported. Port-active load-balancing mode MAY also be supported.
* Multi-homed PE scenarios non-revertive mode MUST and revertive
mode SHOULD be supported in compliance to
[I-D.ietf-bess-evpn-pref-df].
5. Service Types
The following sections list all possible service types that are
supported by the proposed signalling mechanisms.
5.1. Ethernet Service Types
+==============+=====================+======+=========+=============+
| Service | Encapsulation | PW | PLE/CEP | PLE/CEP/TDM |
| Type | Standard | Type | Type | Bit-rate |
+==============+=====================+======+=========+=============+
| 1000Base-X | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 1,250,000 |
+--------------+---------------------+------+---------+-------------+
| 10GBASE-R | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 10,312,500 |
+--------------+---------------------+------+---------+-------------+
| 25GBASE-R | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 25,791,300 |
+--------------+---------------------+------+---------+-------------+
| 40GBASE-R | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 41,250,000 |
+--------------+---------------------+------+---------+-------------+
| 50GBASE-R | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 51,562,500 |
+--------------+---------------------+------+---------+-------------+
| 100GBASE-R | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 103,125,000 |
+--------------+---------------------+------+---------+-------------+
| 200GBASE-R | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 212,500,000 |
+--------------+---------------------+------+---------+-------------+
| 400GBASE-R | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 425,000,000 |
+--------------+---------------------+------+---------+-------------+
Table 1: Ethernet Service Types
Gringeri, et al. Expires 25 April 2024 [Page 7]
Internet-Draft Bitstream EVPN-VPWS October 2023
5.2. Fibre Channel Service Types
+==============+=====================+======+=========+=============+
| Service | Encapsulation | PW | PLE/CEP | PLE/CEP/TDM |
| Type | Standard | Type | Type | Bit-rate |
+==============+=====================+======+=========+=============+
| 1GFC | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 1,062,500 |
+--------------+---------------------+------+---------+-------------+
| 2GFC | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 2,125,000 |
+--------------+---------------------+------+---------+-------------+
| 4GFC | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 4,250,000 |
+--------------+---------------------+------+---------+-------------+
| 8GFC | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 8,500,000 |
+--------------+---------------------+------+---------+-------------+
| 10GFC | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 10,518,750 |
+--------------+---------------------+------+---------+-------------+
| 16GFC | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 14,025,000 |
+--------------+---------------------+------+---------+-------------+
| 32GFC | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 28,050,000 |
+--------------+---------------------+------+---------+-------------+
| 64GFC | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 57,800,000 |
+--------------+---------------------+------+---------+-------------+
| 128GFC | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 112,200,000 |
+--------------+---------------------+------+---------+-------------+
Table 2: Fibre Channel Service Types
5.3. OTN Service Types
+==============+=====================+======+=========+=============+
| Service | Encapsulation | PW | PLE/CEP | PLE/CEP/TDM |
| Type | Standard | Type | Type | Bit-rate |
+==============+=====================+======+=========+=============+
| ODU0 | [I-D.ietf-pals-ple] | TBD1 | 0x4 | 1,244,160 |
+--------------+---------------------+------+---------+-------------+
| ODU1 | [I-D.ietf-pals-ple] | TBD1 | 0x4 | 2,498,775 |
+--------------+---------------------+------+---------+-------------+
| ODU2 | [I-D.ietf-pals-ple] | TBD1 | 0x4 | 10,037,273 |
+--------------+---------------------+------+---------+-------------+
| ODU2e | [I-D.ietf-pals-ple] | TBD1 | 0x4 | 10,399,525 |
+--------------+---------------------+------+---------+-------------+
| ODU3 | [I-D.ietf-pals-ple] | TBD1 | 0x4 | 40,319,218 |
+--------------+---------------------+------+---------+-------------+
| ODU4 | [I-D.ietf-pals-ple] | TBD1 | 0x4 | 104,794,445 |
+--------------+---------------------+------+---------+-------------+
Table 3: OTN Service Types
Gringeri, et al. Expires 25 April 2024 [Page 8]
Internet-Draft Bitstream EVPN-VPWS October 2023
5.4. TDM Service Types
+===============+===============+========+=========+=============+
| Service Type | Encapsulation | PW | PLE/CEP | PLE/CEP/TDM |
| | Standard | Type | Type | Bit-rate |
+===============+===============+========+=========+=============+
| CESoPSN basic | [RFC5086] | 0x0015 | N/A | N |
| mode | | | | |
+---------------+---------------+--------+---------+-------------+
| CESoPSN with | [RFC5086] | 0x0017 | N/A | N |
| CAS | | | | |
+---------------+---------------+--------+---------+-------------+
| E1 | [RFC4553] | 0x0011 | N/A | 32 |
+---------------+---------------+--------+---------+-------------+
| DS1 | [RFC4553] | 0x0012 | N/A | 24 |
+---------------+---------------+--------+---------+-------------+
| DS1 octet- | [RFC4553] | 0x0012 | N/A | 25 |
| aligned | | | | |
+---------------+---------------+--------+---------+-------------+
| E3 | [RFC4553] | 0x0013 | N/A | 535 |
+---------------+---------------+--------+---------+-------------+
| T3 | [RFC4553] | 0x0014 | N/A | 699 |
+---------------+---------------+--------+---------+-------------+
Table 4: TDM Service Types
5.5. SONET/SDH Service Types
+===========+=====================+========+=========+=============+
| Service | Encapsulation | PW | PLE/CEP | PLE/CEP/TDM |
| Type | Standard | Type | Type | Bit-rate |
+===========+=====================+========+=========+=============+
| VT1.5/ | [RFC4842] | 0x0010 | 0x1 | 26 |
| VC-11 | | | | |
+-----------+---------------------+--------+---------+-------------+
| VT2/VC-12 | [RFC4842] | 0x0010 | 0x1 | 35 |
+-----------+---------------------+--------+---------+-------------+
| VT3 | [RFC4842] | 0x0010 | 0x1 | 53 |
+-----------+---------------------+--------+---------+-------------+
| VT6/VC-2 | [RFC4842] | 0x0010 | 0x1 | 107 |
+-----------+---------------------+--------+---------+-------------+
| STS-Nc | [RFC4842] | 0x0010 | 0x0 | 783*N |
+-----------+---------------------+--------+---------+-------------+
| VC-4-Mc | [RFC4842] | 0x0010 | 0x0 | 783_3_M |
+-----------+---------------------+--------+---------+-------------+
| Fract. | [RFC4842] | 0x0010 | 0x2 | 783 |
| STS1/VC-3 | | | | |
+-----------+---------------------+--------+---------+-------------+
Gringeri, et al. Expires 25 April 2024 [Page 9]
Internet-Draft Bitstream EVPN-VPWS October 2023
| Fract. | [RFC4842] | 0x0010 | 0x2 | 783*4 |
| VC-4 | | | | |
+-----------+---------------------+--------+---------+-------------+
| Async | [RFC4842] | 0x0010 | 0x2 | 783 |
| STS1/VC-3 | | | | |
+-----------+---------------------+--------+---------+-------------+
| OC3/STM1 | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 155,520 |
+-----------+---------------------+--------+---------+-------------+
| OC12/STM4 | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 622,080 |
+-----------+---------------------+--------+---------+-------------+
| OC48/ | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 2,488,320 |
| STM16 | | | | |
+-----------+---------------------+--------+---------+-------------+
| OC192/ | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 9,953,280 |
| STM64 | | | | |
+-----------+---------------------+--------+---------+-------------+
| OC768/ | [I-D.ietf-pals-ple] | TBD1 | 0x3 | 39,813,120 |
| STM256 | | | | |
+-----------+---------------------+--------+---------+-------------+
Table 5: Ethernet Service Types
6. Reuse of existing BGP EVPN-VPWS Capabilities
A PLE VPWS instance is identified by a pair of per-EVI ethernet A-D
routes advertised by two PE nodes establishing the VPWS in accordance
to [RFC8214].
The EVPN layer 2 attribute extended community defined in [RFC8214]
MUST be supported and added to the per-EVI ethernet A-D route.
* C bit set to 1 to indicate Control Word MUST be present.
* P and B bits are set by dual-homing PEs as per [RFC8214] and
[I-D.ietf-bess-evpn-pref-df]
* L2 MTU MUST be set to zero and ignored by the receiver
7. BGP Bitstream Attribute
To exchange and validate bit-stream specific attachment circuit
parameters during the VPWS setup, a new BGP path attribute called
"BGP Bitstream attribute" is defined.
Gringeri, et al. Expires 25 April 2024 [Page 10]
Internet-Draft Bitstream EVPN-VPWS October 2023
The BGP Bitstream attribute defined in this document can be attached
to EVPN VPWS routes [RFC8214]. The usage for other Address Family
Identifier (AFI) / Subsequent Address Family Identifier (SAFI)
combinations is not defined herein but may be specified in future
specifications.
The BGP bitstream attribute is an optional and transitive BGP path
attribute. The attribute type code TBD2 has been assigned by IANA
(see Section 10)
The format is defined as a set of Type/Length/Value (TLV) triplets,
described in the following sections and listed in Table 6. This
attribute SHOULD only be included with EVPN Network Layer
Reachability Information (NLRI).
+==========+===============================+========+===========+
| TLV Type | Name | Length | Mandatory |
+==========+===============================+========+===========+
| 1 | PW Type TLV | 3 | Y |
+----------+-------------------------------+--------+-----------+
| 2 | PLE/CEP/TDM Bit-rate TLV | 5 | Y |
+----------+-------------------------------+--------+-----------+
| 3 | PLE/CEP Options TLV | 3 | Y 1* |
+----------+-------------------------------+--------+-----------+
| 4 | TDM Options TLV | 13 | Y 2* |
+----------+-------------------------------+--------+-----------+
| 5 | PLE/CEP/TDM Payload Bytes TLV | 3 | N |
+----------+-------------------------------+--------+-----------+
| 6 | Endpoint-ID TLV | 0..80 | N |
+----------+-------------------------------+--------+-----------+
Table 6: BGP Bitstream attribute TLV
1* PLE/CEP only
2* TDM only
For a particular PSN it is expected that the network operator will
choose a common set of parameters per VPWS type, hence efficient BGP
update packing as discussed in Section 12 of [RFC4277] is expected to
happen.
7.1. PW Type TLV
The PW Type TLV MUST be present in the BGP bitstream attribute to
signal what type of VPWS instance has to be established. Valid PW
types for the mechanisms described in this document can be found in
Section 5.
Gringeri, et al. Expires 25 April 2024 [Page 11]
Internet-Draft Bitstream EVPN-VPWS October 2023
The PW Type TLV format is shown in Figure 2
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|R| PW Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: PW Type TLV
Type : 1
Length : 3
The total length in octets of the value portion of the TLV.
Reserved / R :
For future use. MUST be set to ZERO and ignored by receiver.
PW Type :
A 15-bit quantity containing a value that represents the type of
VPWS. Assigned Values are specified in "IANA Allocations for
Pseudowire Edge to Edge Emulation (PWE3)" [RFC4446].
7.2. PLE/CEP/TDM Bit-rate TLV
The PLE/CEP/TDM Bit-rate TLV is MANDATORY but MAY be omitted if the
attachment circuit type can be unambiguously derived from the PW Type
carried in the PW Type TLV. The PLE/CEP/TDM Bit-rate TLV format is
shown in Figure 3.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PLE/CEP/TDM Bit-rate |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: PLE/CEP/TDM Bit-rate TLV
Type : 2
Length : 5
Gringeri, et al. Expires 25 April 2024 [Page 12]
Internet-Draft Bitstream EVPN-VPWS October 2023
The total length in octets of the value portion of the TLV.
Reserved :
8-bit field for future use. MUST be set to ZERO and ignored by
receiver.
PLE/CEP/TDM Bit-rate :
A four byte field denoting the desired payload size to be used.
Rules defined in [RFC5287] do apply for signalling TDM VPWS.
Rules for CEP VPWS are defined in [RFC4842].
- For PLE [PLE] the bit rate MUST be set to the data rate in
units of 1-kbps of the PLE payload.
- Guidelines for setting the bit rate for SAToP VPWS and CESoP
VPWS can be found in [RFC5287]. And for CEP VPWS in [RFC4842].
7.3. PLE/CEP Options TLV
The PLE/CEP Options TLV MUST be present when signalling CEP and PLE
VPWS instances. The PLE/CPE Options TLV format is shown in Figure 4.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PLE/CEP Options |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: PLE/CEP Options TLV
Type : 3
Length : 3
The total length in octets of the value portion of the TLV.
Reserved :
8-bit field for future use. MUST be set to ZERO and ignored by
receiver.
PLE/CEP Options :
A two byte field with the format as shown in Figure 5
Gringeri, et al. Expires 25 April 2024 [Page 13]
Internet-Draft Bitstream EVPN-VPWS October 2023
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|AIS|UNE|RTP|EBM| Reserved [0:6] | PLE/CEP | Async |
| | | | | | Type |T3 |E3 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
Figure 5: PLE/CEP Options
AIS, UNE, RTP, EBM :
These bits MUST be set to zero and ignored by the receiver except
for CEP VPWS. Guidelines for CEP are defined in [RFC4842]
Reserved :
7-bit field for future use. MUST be set to ZERO and ignored by
receiver.
CEP/PLE Type :
Indicates the connection type for CEP and PLE. CEP connection
types are defined in [RFC4842]. Two new values for PLE are
defined in this document:
- 0x3 - Basic PLE payload
- 0x4 - Byte aligned PLE payload
Async :
These bits MUST be set to zero and ignored by the receiver except
for CEP VPWS. Guidelines for CEP are defined in [RFC4842]
7.4. TDM options TLV
Whether when signalling TDM VPWS the TDM Options TLV MUST be present
or MAY be omitted when signalling TDM VPWS instances is defined in
[RFC5287]. The TDM Options TLV format is shown in Figure 6.
Gringeri, et al. Expires 25 April 2024 [Page 14]
Internet-Draft Bitstream EVPN-VPWS October 2023
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| TDM Options |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: TDM Options TLV
Type : 4
Length : 13
The total length in octets of the value portion of the TLV.
Reserved :
8-bit field for future use. MUST be set to ZERO and ignored by
receiver.
TDM Options :
A twelve byte field with the format as defined in {Section 3.8 of
RFC5287}
7.5. PLE/CEP/TDM Payload Bytes TLV
The PLE/CEP/TDM Payload Bytes TLV MAY be included if a non-default
payload size is to be used. If this TLV is omitted then the default
payload sizes defined in [RFC4553], [RFC5086], [RFC4842] and [PLE]
MUST be assumed. The format of the PLE/CEP/TDM Payload Bytes TLV is
shown in Figure 7.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PLE/CEP/TDM Payload Bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: PLE/CEP/TDM Payload Bytes TLV
Gringeri, et al. Expires 25 April 2024 [Page 15]
Internet-Draft Bitstream EVPN-VPWS October 2023
Type : 5
Length : 3
The total length in octets of the value portion of the TLV.
Reserved :
8-bit field for future use. MUST be set to ZERO and ignored by
receiver.
PLE/CEP/TDM Payload Bytes :
A two byte field denoting the desired payload size to be used.
Rules defined in [RFC5287] do apply for signalling TDM VPWS.
Rules for CEP VPWS are defined in [RFC4842].
7.6. Endpoint-ID TLV
The Endpoint-ID TLV MAY be included to allow for misconnection
detection. The Endpoint-ID TLV format is shown in Figure 8.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
// Endpoint Identifier (variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: Endpoint-ID TLV
Type : 6
Length : 0-80
The total length in octets of the value portion of the TLV.
Endpoint Identifier :
Arbitrary string of variable length from 0 to 80 octets used to
describe the attachment circuit to the remote PE node.
8. Control Plane Operations
The deployment model shown in figure 3 of [RFC8214] does equally
apply to the operations defined in this document.
Gringeri, et al. Expires 25 April 2024 [Page 16]
Internet-Draft Bitstream EVPN-VPWS October 2023
8.1. VPWS Setup and Teardown
After an attachment circuit has been configured to be part of a VPWS
instance and has not declared any local defect, the PE node announces
his endpoint using a per-EVI ethernet A-D route to other PEs in the
PSN via BGP. The Ethernet Tag ID is set to the VPWS instance
identifier and the BGP bitstream attribute is included to carry
mandatory and optional bit-stream specific attachment circuit
parameters.
Both endpoints receiving the EVPN per-EVI A-D route, validate the end
to end connectivity by comparing BGP bitstream attributes. Upon
successful validation, the VPWS instance comes up and traffic can
flow through the PSN. In the scenario where the validation phase
fails, the remote PE reachability information is simply ignored and
dismissed as a destination candidate. The VPWS instance validation
is performed as follow:
* The mandatory PW type parameter MUST be identical
* The mandatory PLE/CEP/TDM Bit-rate parameter MUST be identical.
This MAY be skipped if this parameter was not signalled because
the attachment circuit rate can be unambiguously derived from the
PW type [RFC5287].
* For CEP and PLE, the mandatory CEP/PLE Type parameter signalled
via the CEP/PLE Options TLV MUST be identical
* If the payload size was signalled via the optional PLE/CEP/TDM
Payload Bytes TLV it MUST be identical and supported by the PE
node. Else the default payload size MUST be assumed.
If any of the previous statements is no true or any of the signal
CEP/PLE or TDM options is not supported by the PE node, the VPWS
instance must stay down and a appropriate defect MUST be declared.
PLE is structure agnostic for SONET/SDH service types and hence can
not validate whether a mix of SONET and SDH attachment circuits are
connected (by incident) via VPWS. The detection of such
misconfiguration is the responsibility of the operator managing the
CE nodes.
In case of multi-homed CEs the mechanisms defined in [RFC8214] apply
but are limited to the single-active and port-active scenarios.
Whenever the VPWS instance configuration is removed, the PE node MUST
widthdraw its associated per-EVI ethernet A-D route.
Gringeri, et al. Expires 25 April 2024 [Page 17]
Internet-Draft Bitstream EVPN-VPWS October 2023
8.2. Misconnection Handling
In circuit switched networks it is a common requirement to have the
ability to check if the correct two endpoints got connected via a
circuit. To confirm that the established bit-stream VPWS service is
connecting the appropriate pair of attachment circuits, a Endpoint-ID
string MAY be configured on each attachment circuit and communicated
to the peer PE node using the Endpoint-ID TLV defined in Section 7.6.
Each endpoint MAY be configured to compare the Endpoint-ID received
from the peer PE node to a locally configured expected Endpoint-ID
and raise a fault (defect) when the IDs don't match. When a fault is
raised, the R bit in the control word must bet set to 1 (backward
defect indication) for the VPWS packets sent to the peer PE node.
Each endpoint MAY be configured to only compare and report
mismatches, but not to raise a fault.
8.3. Failure Scenarios
8.3.1. Single-homed CEs
Whenever a attachment circuit does declare a local fault the
following operations MUST happen:
* Operations defined in [RFC4553], [RFC5086], [RFC4842] and
[I-D.ietf-pals-ple] MUST happen
* The per-EVI ethernet A-D route MAY be withdrawn
Whenever the CE-bound IWF does enter packet loss state the operations
defined in [RFC4553], [RFC5086], [RFC4842] and [I-D.ietf-pals-ple]
MUST happen.
8.3.2. Multi-homed CEs
Figure 9 demonstrates a multi-homing scenario. CE1 is connected to
PE1 and PE2 where PE1 is the designated forwarder while PE2 is the
non designated forwarder.
Gringeri, et al. Expires 25 April 2024 [Page 18]
Internet-Draft Bitstream EVPN-VPWS October 2023
PSN
+---------+
DF +---+ | | +---+ +---+
+--|PE1|----|---------|---|PE3|---|CE2|
+---+/ +---+ | VPWS1/| +---+ +---+
|CE1| | / |
+---+\ +---+ | / |
+--|PE2|----|-----+ |
NDF +---+ | |
+---------+
Figure 9: EVPN-VPWS Multi-homing Redundancy
In Figure 9 PE1 and PE2 are configured for single-active load-
balancing mode. Both PEs are advertising a per-ES ethernet A-D route
with the same non-zero Ethernet Segment (ES) value and the single-
active bit set. This non-zero ES value is called Ethernet Segment
Identifier (ESI).
In this example PE1 is elected as Designated Forwarder (DF) for the
shared ESI where as PE2 is the Non-Designated Forwarder (NDF) for
that segment. The signalling of primary / backup follows exactly the
procedure defined in [RFC8214] where P and B bits of the layer 2
attribute extended community are used to settle proper connectivity.
Upon link failure between CE1 and PE1, PE1 and PE2 follows EVPN
Ethernet Segment DF Election procedures described in [RFC8214] and
[I-D.ietf-bess-evpn-pref-df] for EVPN-VPWS. PE1 leverage mass-
withdraw mechanism to tell PE3 to steer traffic over backup
connectivity. The per-EVI ethernet A-D route advertisement remains
intact. The main purpose is to keep reachability information
available for fast convergence purpose. Therefore, the per-EVI
ethernet A-D route MAY be withdrawn only under local fault and MUST
be withdraw when the circuit is unconfigured.
Port-active operation happens in the same way as single-active load-
balancing mode described before but at the port level instead of
being at the sub-interface level.
9. Security Considerations
The same Security Considerations described in [RFC8214] are valid for
this document.
Gringeri, et al. Expires 25 April 2024 [Page 19]
Internet-Draft Bitstream EVPN-VPWS October 2023
10. IANA Considerations
This document defines a new BGP path attribute known as the BGP
bitstream attribute. IANA is requested to assign attribute code type
TBD2 to the BGP bitstream attribute from the "BGP Path Attributes"
registry.
This document defines a new PW Type for PLE VPWS. IANA is requested
to assign a PW type value TBD1 from the "MPLS Pseudowire Types"
registry.
11. Acknowledgements
to be added
12. References
12.1. Normative References
[I-D.ietf-bess-evpn-pref-df]
Rabadan, J., Sathappan, S., Lin, W., Drake, J., and A.
Sajassi, "Preference-based EVPN DF Election", Work in
Progress, Internet-Draft, draft-ietf-bess-evpn-pref-df-13,
9 October 2023, <https://datatracker.ietf.org/doc/html/
draft-ietf-bess-evpn-pref-df-13>.
[I-D.ietf-pals-ple]
Gringeri, S., Whittaker, J., Leymann, N., Schmutzer, C.,
and C. Brown, "Private Line Emulation over Packet Switched
Networks", Work in Progress, Internet-Draft, draft-ietf-
pals-ple-01, 21 October 2023,
<https://datatracker.ietf.org/doc/html/draft-ietf-pals-
ple-01>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/rfc/rfc2119>.
[RFC4277] McPherson, D. and K. Patel, "Experience with the BGP-4
Protocol", RFC 4277, DOI 10.17487/RFC4277, January 2006,
<https://www.rfc-editor.org/rfc/rfc4277>.
[RFC4553] Vainshtein, A., Ed. and YJ. Stein, Ed., "Structure-
Agnostic Time Division Multiplexing (TDM) over Packet
(SAToP)", RFC 4553, DOI 10.17487/RFC4553, June 2006,
<https://www.rfc-editor.org/rfc/rfc4553>.
Gringeri, et al. Expires 25 April 2024 [Page 20]
Internet-Draft Bitstream EVPN-VPWS October 2023
[RFC4842] Malis, A., Pate, P., Cohen, R., Ed., and D. Zelig,
"Synchronous Optical Network/Synchronous Digital Hierarchy
(SONET/SDH) Circuit Emulation over Packet (CEP)",
RFC 4842, DOI 10.17487/RFC4842, April 2007,
<https://www.rfc-editor.org/rfc/rfc4842>.
[RFC5086] Vainshtein, A., Ed., Sasson, I., Metz, E., Frost, T., and
P. Pate, "Structure-Aware Time Division Multiplexed (TDM)
Circuit Emulation Service over Packet Switched Network
(CESoPSN)", RFC 5086, DOI 10.17487/RFC5086, December 2007,
<https://www.rfc-editor.org/rfc/rfc5086>.
[RFC5287] Vainshtein, A. and Y. Stein, "Control Protocol Extensions
for the Setup of Time-Division Multiplexing (TDM)
Pseudowires in MPLS Networks", RFC 5287,
DOI 10.17487/RFC5287, August 2008,
<https://www.rfc-editor.org/rfc/rfc5287>.
[RFC7432] Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A.,
Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based
Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February
2015, <https://www.rfc-editor.org/rfc/rfc7432>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.
[RFC8214] Boutros, S., Sajassi, A., Salam, S., Drake, J., and J.
Rabadan, "Virtual Private Wire Service Support in Ethernet
VPN", RFC 8214, DOI 10.17487/RFC8214, August 2017,
<https://www.rfc-editor.org/rfc/rfc8214>.
[RFC8986] Filsfils, C., Ed., Camarillo, P., Ed., Leddy, J., Voyer,
D., Matsushima, S., and Z. Li, "Segment Routing over IPv6
(SRv6) Network Programming", RFC 8986,
DOI 10.17487/RFC8986, February 2021,
<https://www.rfc-editor.org/rfc/rfc8986>.
[RFC9252] Dawra, G., Ed., Talaulikar, K., Ed., Raszuk, R., Decraene,
B., Zhuang, S., and J. Rabadan, "BGP Overlay Services
Based on Segment Routing over IPv6 (SRv6)", RFC 9252,
DOI 10.17487/RFC9252, July 2022,
<https://www.rfc-editor.org/rfc/rfc9252>.
12.2. Informative References
Gringeri, et al. Expires 25 April 2024 [Page 21]
Internet-Draft Bitstream EVPN-VPWS October 2023
[RFC1925] Callon, R., "The Twelve Networking Truths", RFC 1925,
DOI 10.17487/RFC1925, April 1996,
<https://www.rfc-editor.org/rfc/rfc1925>.
[RFC3985] Bryant, S., Ed. and P. Pate, Ed., "Pseudo Wire Emulation
Edge-to-Edge (PWE3) Architecture", RFC 3985,
DOI 10.17487/RFC3985, March 2005,
<https://www.rfc-editor.org/rfc/rfc3985>.
[RFC8077] Martini, L., Ed. and G. Heron, Ed., "Pseudowire Setup and
Maintenance Using the Label Distribution Protocol (LDP)",
STD 84, RFC 8077, DOI 10.17487/RFC8077, February 2017,
<https://www.rfc-editor.org/rfc/rfc8077>.
Authors' Addresses
Steven Gringeri
Verizon
United States of America
Email: steven.gringeri@verizon.com
Jeremy Whittaker
Verizon
United States of America
Email: jeremy.whittaker@verizon.com
Christian Schmutzer (editor)
Cisco Systems, Inc.
Austria
Email: cschmutz@cisco.com
Bharath Vasudevan
Cisco Systems, Inc.
Bangalore
India
Email: bhavasud@cisco.com
Patrice Brissette
Cisco Systems, Inc.
Ottawa
Canada
Email: pbrisset@cisco.com
Gringeri, et al. Expires 25 April 2024 [Page 22]