Internet DRAFT - draft-smyslov-esp-gost
draft-smyslov-esp-gost
Network Working Group V. Smyslov
Internet-Draft ELVIS-PLUS
Intended status: Informational 7 February 2022
Expires: 11 August 2022
Using GOST ciphers in ESP and IKEv2
draft-smyslov-esp-gost-14
Abstract
This document defines a set of encryption transforms for use in the
Encapsulating Security Payload (ESP) and in the Internet Key Exchange
version 2 (IKEv2) protocols which are parts of the IP Security
(IPsec) protocols suite. The transforms are based on the GOST R
34.12-2015 block ciphers (which are named "Magma" and "Kuznyechik")
in a Multilinear Galois Mode (MGM) and the external re-keying
approach.
This specification is developed to facilitate implementations that
wish to support the GOST algorithms. This document does not imply
IETF endorsement of the cryptographic algorithms used in this
document.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 11 August 2022.
Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.
Smyslov Expires 11 August 2022 [Page 1]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Requirements Language . . . . . . . . . . . . . . . . . . . . 3
3. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4. Transforms Description . . . . . . . . . . . . . . . . . . . 4
4.1. Tree-based External Re-Keying . . . . . . . . . . . . . . 4
4.2. Initialization Vector Format . . . . . . . . . . . . . . 6
4.3. Nonce Format for MGM . . . . . . . . . . . . . . . . . . 6
4.3.1. MGM Nonce Format for "Kuznyechik" based Transforms . 7
4.3.2. MGM Nonce Format for "Magma" based Transforms . . . . 7
4.4. Keying Material . . . . . . . . . . . . . . . . . . . . . 8
4.5. Integrity Check Value . . . . . . . . . . . . . . . . . . 9
4.6. Plaintext Padding . . . . . . . . . . . . . . . . . . . . 9
4.7. AAD Construction . . . . . . . . . . . . . . . . . . . . 9
4.7.1. ESP AAD . . . . . . . . . . . . . . . . . . . . . . . 9
4.7.2. IKEv2 AAD . . . . . . . . . . . . . . . . . . . . . . 11
4.8. Using Transforms . . . . . . . . . . . . . . . . . . . . 12
5. Security Considerations . . . . . . . . . . . . . . . . . . . 12
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 14
7. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 14
8. References . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.1. Normative References . . . . . . . . . . . . . . . . . . 14
8.2. Informative References . . . . . . . . . . . . . . . . . 15
Appendix A. Test Vectors . . . . . . . . . . . . . . . . . . . . 16
Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 24
1. Introduction
The IP Security (IPsec) protocols suite consists of several
protocols, of which the Encapsulating Security Payload (ESP)
[RFC4303] and the Internet Key Exchange version 2 (IKEv2) [RFC7296]
are most widely used. This document defines four transforms for ESP
and IKEv2 based on Russian cryptographic standard algorithms (often
referred to as "GOST" algorithms). This definition is based on the
Recommendations [GOST-ESP] established by Federal Agency on Technical
Regulating and Metrology (Rosstandart), which describe how Russian
cryptographic standard algorithms are used in ESP and IKEv2.
Transforms defined in this document are based on two block ciphers
Smyslov Expires 11 August 2022 [Page 2]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
from Russian cryptographic standard algorithms - "Kuznyechik"
[GOST3412-2015][RFC7801] and "Magma" [GOST3412-2015][RFC8891] in
Multilinear Galois Mode (MGM) [GOST-MGM][RFC9058]. These transforms
provide Authenticated Encryption with Associated Data (AEAD). An
external re-keying mechanism, described in [RFC8645] is also used in
these transforms to limit load on session keys.
Because the GOST specification includes the definition of both 128
("Kuznyechik") and 64 ("Magma") bit block ciphers, both are included
in this document. Implementers should make themselves aware of the
relative security and other cost-benefit implications of the two
ciphers. See Section 5 for more details.
This specification is developed to facilitate implementations that
wish to support the GOST algorithms. This document does not imply
IETF endorsement of the cryptographic algorithms used in this
document.
2. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
3. Overview
Russian cryptographic standard algorithms, often referred as "GOST"
algorithms, constitute a set of cryptographic algorithms of different
types - ciphers, hash functions, digital signatures, etc. In
particular, Russian cryptographic standard [GOST3412-2015] defines
two block ciphers - "Kuznyechik" (also defined in [RFC7801]) and
"Magma" (also defined in [RFC8891]). Both ciphers use 256-bit key.
"Kuznyechik" has a block size of 128 bits, while "Magma" has a 64-bit
block.
Multilinear Galois Mode (MGM) is an AEAD mode defined in
[GOST-MGM][RFC9058]. It is claimed to provide defense against some
attacks on well-known AEAD modes, like Galois Counter Mode (GCM).
Smyslov Expires 11 August 2022 [Page 3]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
[RFC8645] defines mechanisms that can be used to limit the number of
times any particular session key is used. One of these mechanisms,
called external re-keying with tree-based construction (defined in
Section 5.2.3 of [RFC8645]), is used in the defined transforms. For
the purpose of deriving subordinate keys a Key Derivation Function
(KDF) KDF_GOSTR3411_2012_256 defined in Section 4.5 of [RFC7836], is
used. This KDF is based on an HMAC [RFC2104] construction with a
Russian GOST hash function defined in Russian cryptographic standard
[GOST3411-2012] (also defined in [RFC6986]).
4. Transforms Description
This document defines four transforms of Type 1 (Encryption
Algorithm) for use in ESP and IKEv2. All of them use MGM mode of
operation with tree-based external re-keying. The transforms differ
in underlying ciphers and in cryptographic services they provide.
* ENCR_KUZNYECHIK_MGM_KTREE (Transform ID 32) is an AEAD transform
based on "Kuznyechik" algorithm; it provides confidentiality and
message authentication and thus can be used in both ESP and IKEv2
* ENCR_MAGMA_MGM_KTREE (Transform ID 33) is an AEAD transform based
on "Magma" algorithm; it provides confidentiality and message
authentication and thus can be used in both ESP and IKEv2
* ENCR_KUZNYECHIK_MGM_MAC_KTREE (Transform ID 34) is a MAC-only
transform based on "Kuznyechik" algorithm; it provides no
confidentiality and thus can only be used in ESP, but not in IKEv2
* ENCR_MAGMA_MGM_MAC_KTREE (Transform ID 35) is a MAC-only transform
based on "Magma" algorithm; it provides no confidentiality and
thus can only be used in ESP, but not in IKEv2
Note that transforms ENCR_KUZNYECHIK_MGM_MAC_KTREE and
ENCR_MAGMA_MGM_MAC_KTREE don't provide any confidentiality, but they
are defined as Type 1 (Encryption Algorithm) transforms because of
the need to include an Initialization Vector, which is impossible for
Type 3 (Integrity Algorithm) transforms.
4.1. Tree-based External Re-Keying
All four transforms use the same tree-based external re-keying
mechanism. The idea is that the key that is provided for the
transform is not directly used to protect messages. Instead, a tree
of keys is derived using this key as a root. This tree may have
several levels. The leaf keys are used for message protection, while
intermediate nodes keys are used to derive lower-level keys,
including leaf keys. See Section 5.2.3 of [RFC8645] for more
Smyslov Expires 11 August 2022 [Page 4]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
details. This construction allows us to protect a large amount of
data, at the same time providing a bound on a number of times any
particular key in the tree is used, thus defending against some side
channel attacks and also increasing the key lifetime limitations
based on combinatorial properties.
The transforms defined in this document use a three-level tree. The
leaf key that protects a message is computed as follows:
K_msg = KDF (KDF (KDF (K, l1, 0x00 | i1), l2, i2), l3, i3)
where:
KDF (k, l, s) Key Derivation Function KDF_GOSTR3411_2012_256
defined in Section 4.5 of [RFC7836], which accepts
three input parameters - a key (k), a label (l) and a
seed (s) and provides a new key as an output;
K the root key for the tree (see Section 4.4);
l1, l2, l3 labels defined as 6 octet ASCII strings without null
termination:
l1 = "level1"
l2 = "level2"
l3 = "level3"
i1, i2, i3 parameters that determine which keys out of the tree
are used on each level, altogether they determine a
leaf key that is used for message protection; the
length of i1 is one octet, i2 and i3 are two octet
integers in network byte order;
| indicates concatenation;
This construction allows us to generate up to 2^8 keys on level 1 and
up to 2^16 keys on levels 2 and 3. So, the total number of possible
leaf keys generated from a single SA key is 2^40.
This specification doesn't impose any requirements on the frequency
of which the external re-keying takes place. It is expected that
sending application will follow its own policy dictating how many
times the keys on each level must be used.
Smyslov Expires 11 August 2022 [Page 5]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
4.2. Initialization Vector Format
Each message protected by the defined transforms MUST contain an
Initialization Vector (IV). The IV has a size of 64 bits and
consists of the four fields, three of which are i1, i2 and i3
parameters that determine the particular leaf key this message was
protected with (see Section 4.1), and the fourth is a counter,
representing the message number for this key.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| i1 | i2 | i3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| i3 (cont) | pnum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: IV Format
where:
* i1 (1 octet), i2 (2 octets), i3 (2 octets) - parameters,
determining the particular key used to protect this message;
2-octets parameters are integers in network byte order
* pnum (3 octets) - message counter in network byte order for the
leaf key protecting this message; up to 2^24 messages may be
protected using a single leaf key
For any given SA the IV MUST NOT be used more than once, but there is
no requirement that IV is unpredictable.
4.3. Nonce Format for MGM
MGM requires a per-message nonce (called Initial Counter Nonce, ICN,
in the [RFC9058]) that MUST be unique in the context of any leaf key.
The size of the ICN is n-1 bits, where n is the block size of the
underlying cipher. The two ciphers used in the transforms defined in
this document have different block sizes, so two different formats
for the ICN are defined.
MGM specification requires that the nonce be n-1 bits in size, where
n is the block size of the underlying cipher. This document defines
MGM nonces having n bits (the block size of the underlying cipher) in
size. Since the n is always a multiple of 8 bits, this makes MGM
nonces having a whole number of octets. When used inside MGM the
most significant bit of the first octet of the nonce (represented as
Smyslov Expires 11 August 2022 [Page 6]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
an octet string) is dropped, making the effective size of the nonce
equal to n-1 bits. Note that the dropped bit is a part of zero field
(see Figure 2 and Figure 3) which is always set to 0, so no
information is lost when it is dropped.
4.3.1. MGM Nonce Format for "Kuznyechik" based Transforms
For transforms based on "Kuznyechik" cipher
(ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE) the ICN
consists of a zero octet, a 24-bit message counter and a 96-bit
secret salt, that is fixed for SA and is not transmitted.
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| zero | pnum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| salt |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: Nonce format for "Kuznyechik" based transforms
where:
* zero (1 octet) - set to 0
* pnum (3 octets) - the counter for the messages protected by the
given leaf key; this field MUST be equal to the pnum field in the
IV
* salt (12 octets) - secret salt
4.3.2. MGM Nonce Format for "Magma" based Transforms
For transforms based on "Magma" cipher (ENCR_MAGMA_MGM_KTREE and
ENCR_MAGMA_MGM_MAC_KTREE) the ICN consists of a zero octet, a 24-bit
message counter and a 32-bit secret salt, that is fixed for SA and is
not transmitted.
Smyslov Expires 11 August 2022 [Page 7]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| zero | pnum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| salt |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Nonce format for "Magma" based transforms
where:
* zero (1 octet) - set to 0
* pnum (3 octets) - the counter for the messages protected by the
given leaf key; this field MUST be equal to the pnum field in the
IV
* salt (4 octets) - secret salt
4.4. Keying Material
We'll refer as "transform key" to a string of bits that are used to
initialize the transforms defined in this specification. The
transform key is a composite entity consisting of the root key for
the tree and the secret salt.
The transform key for ENCR_KUZNYECHIK_MGM_KTREE and
ENCR_KUZNYECHIK_MGM_MAC_KTREE transforms consists of 352 bits (44
octets), of which the first 256 bits is a root key for the tree
(denoted as K in Section 4.1) and the remaining 96 bits is a secret
salt (see Section 4.3.1).
The transform key for ENCR_MAGMA_MGM_KTREE and
ENCR_MAGMA_MGM_MAC_KTREE transforms consists of 288 bits (36 octets),
of which the first 256 bits is a root key for the tree (denoted as K
in Section 4.1) and the remaining 32 bits is a secret salt (see
Section 4.3.2).
In case of ESP the transform keys are extracted from the KEYMAT as
defined in Section 2.17 of [RFC7296]. In case of IKEv2 the transform
keys are either SK_ei or SK_er, which are generated as defined in
Section 2.14 of [RFC7296]. Note that since these transforms provide
authenticated encryption, no additional keys are needed for
authentication. It means that in case of IKEv2 the keys SK_ai/SK_ar
are not used and MUST be treated as having zero length.
Smyslov Expires 11 August 2022 [Page 8]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
4.5. Integrity Check Value
The length of the authentication tag that MGM can compute is in the
range from 32 bits to the block size of the underlying cipher.
Section 4 of the [RFC9058] states that the authentication tag length
must be fixed for a particular protocol. For "Kuznyechik" based
transforms (ENCR_KUZNYECHIK_MGM_KTREE and
ENCR_KUZNYECHIK_MGM_MAC_KTREE) the resulting Integrity Check Value
(ICV) length is set to 96 bits. For "Magma" based transforms
(ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE) the full ICV
length is set to the block size (64 bits).
4.6. Plaintext Padding
Transforms defined in this document don't require any plaintext
padding, as specified in [RFC9058]. It means, that only those
padding requirements that are imposed by the protocol are applied (4
bytes for ESP, no padding for IKEv2).
4.7. AAD Construction
4.7.1. ESP AAD
Additional Authenticated Data (AAD) in ESP is constructed differently
depending on the transform being used and whether Extended Sequence
Number (ESN) is in use or not. The ENCR_KUZNYECHIK_MGM_KTREE and
ENCR_MAGMA_MGM_KTREE provide confidentiality, so the content of the
ESP body is encrypted and AAD consists of the ESP SPI and (E)SN. The
AAD is constructed similarly to the one in [RFC4106].
On the other hand the ENCR_KUZNYECHIK_MGM_MAC_KTREE and
ENCR_MAGMA_MGM_MAC_KTREE don't provide confidentiality, they provide
only message authentication. For this purpose the IV and the part of
ESP packet that is normally encrypted are included in the AAD. For
these transforms encryption capability provided by MGM is not used.
The AAD is constructed similarly to the one in [RFC4543].
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SPI |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 32-bit Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: AAD for AEAD transforms with 32-bit SN
Smyslov Expires 11 August 2022 [Page 9]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SPI |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 64-bit Extended Sequence Number |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: AAD for AEAD transforms with 64-bit ESN
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SPI |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 32-bit Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IV |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ Payload Data (variable) ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Padding (0-255 bytes) |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Pad Length | Next Header |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: AAD for authentication only transforms with 32-bit SN
Smyslov Expires 11 August 2022 [Page 10]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SPI |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 64-bit Extended Sequence Number |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IV |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ Payload Data (variable) ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Padding (0-255 bytes) |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Pad Length | Next Header |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: AAD for authentication only transforms with 64-bit ESN
4.7.2. IKEv2 AAD
For IKEv2 the AAD consists of the IKEv2 Header, any unencrypted
payloads following it (if present) and the Encrypted (or the
Encrypted Fragment) payload header. The AAD is constructed similar
to the one in [RFC5282].
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ IKEv2 Header ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Unencrypted IKE Payloads ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Payload |C| RESERVED | Payload Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: AAD for IKEv2
Smyslov Expires 11 August 2022 [Page 11]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
4.8. Using Transforms
When SA is established the i1, i2 and i3 parameters are set to 0 by
the sender and a leaf key is calculated. The pnum parameter starts
from 0 and is incremented with each message protected by the same
leaf key. When sender decides that the leaf should be changed, it
increments i3 parameter and generates a new leaf key. The pnum
parameter for the new leaf key is reset to 0 and the process
continues. If the sender decides, that third-level key corresponding
to i3 is used enough times, it increments i2, resets i3 to 0 and
calculates a new leaf key. The pnum is reset to 0 (as with every new
leaf key) and the process continues. Similar procedure is used when
second-level key needs to be changed.
A combination of i1, i2, i3 and pnum MUST NOT repeat for any
particular SA. This means that wrapping around of these counters is
not allowed: when i2, i3 or pnum reach their maximum values, a
procedure of changing a leaf key described above is executed, and if
all four parameters reach their maximum values, the IPsec SA becomes
unusable.
There may be other reasons to recalculate leaf keys beside reaching
maximum values for the counters. For example, as described in
Section 5, it is RECOMMENDED that the sender count the number of
octets protected by a particular leaf key and generate a new key when
some threshold is reached, and at the latest when reaching the octet
limits stated in Section 5 for each of the ciphers.
The receiver always uses i1, i2 and i3 from the received message. If
they differ from the values in previously received packets, a new
leaf key is calculated. The pnum parameter is always used from the
received packet. To improve performance implementations may cache
recently used leaf key. When a new leaf key is calculated (based on
the values from received message) the old key may be kept for some
time to improve performance in case of possible packet reordering
(when packets protected by the old leaf key are delayed and arrive
later).
5. Security Considerations
The most important security consideration for MGM is that the nonce
MUST NOT repeat for a given key. For this reason the transforms
defined in this document MUST NOT be used with manual keying.
Excessive use of the same key can give an attacker advantages in
breaking security properties of the transforms defined in this
document. For this reason the amount of data any particular key is
used to protect should be limited. This is especially important for
Smyslov Expires 11 August 2022 [Page 12]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
algorithms with 64-bit block size (like "Magma"), which currently are
generally considered insecure after protecting relatively small
amount of data. For example, Section 3.4 of [SP800-67] limits the
number of blocks that are allowed to be encrypted with Triple DES
cipher by 2^20 (8 Mbytes of data). This document defines a rekeying
mechanism that allows to mitigate a weak security of a 64-bit block
cipher by frequent changing of encryption key.
For transforms defined in this document, [GOST-ESP] recommends
limiting the number of octets protected with a single Kmsg key by the
following values:
* for transforms based on "Kuznyechik" cipher
(ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE) -
2^41 octets;
* for transforms based on "Magma" cipher (ENCR_MAGMA_MGM_KTREE and
ENCR_MAGMA_MGM_MAC_KTREE) - 2^28 octets;
These values are based on combinatorial properties and may be further
restricted if side channels attacks are taken into considerations.
Note that the limit for "Kuznyechik" based transforms is unreachable
because due to transforms construction the number of protected
messages is limited to 2^24 and each message (either IKEv2 message or
ESP datagram) is limited to 2^16 octets in size, giving 2^40 octets
as the maximum amount of data that can be protected with a single
Kmsg.
Section 4 of [RFC9058] discusses the possibility of truncating
authentication tags in MGM as a trade-off between message expansion
and the forgery probability. This specification truncates an
authentication tag length for "Kuznyechik" based transforms to 96
bits. This decreases message expansion still providing very low
forgery probability of 2^-96.
An attacker can send a lot of packets with arbitrary chosen i1, i2,
and i3 parameters. This will 1) force a recepient to recalculate the
leaf key for every received packet if i1, i2, and i3 are different
from the previous one, thus consuming CPU resources and 2) force a
recepient to make verification attempts (that would fail) on a large
amount of data, thus allowing the attacker for deeper analyzing of
the underlying cryptographic primitive (see
[I-D.irtf-cfrg-aead-limits]). Implementations MAY initiate re-keying
if they deem they receive too many packets with invalid ICV.
Security properties of MGM are discussed in [MGM-SECURITY].
Smyslov Expires 11 August 2022 [Page 13]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
6. IANA Considerations
IANA maintains a registry of "Internet Key Exchange Version 2 (IKEv2)
Parameters" with a sub-registry of "Transform Type Values". IANA has
assigned four Transform IDs in the "Transform Type 1 - Encryption
Algorithm Transform IDs" registry and is requested to update their
references to this document (where RFCXXXX is this document):
Number Name ESP Reference IKEv2 Reference
---------------------------------------------------------------------
32 ENCR_KUZNYECHIK_MGM_KTREE [RFCXXXX] [RFCXXXX]
33 ENCR_MAGMA_MGM_KTREE [RFCXXXX] [RFCXXXX]
34 ENCR_KUZNYECHIK_MGM_MAC_KTREE [RFCXXXX] Not allowed
35 ENCR_MAGMA_MGM_MAC_KTREE [RFCXXXX] Not allowed
7. Acknowledgments
Author wants to thank Adrian Farrel, Russ Housley, Yaron Sheffer and
Stanislav Smyshlyaev for valuable input in the process of publication
this document.
8. References
8.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, DOI 10.17487/RFC4303, December 2005,
<https://www.rfc-editor.org/info/rfc4303>.
[RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
Kivinen, "Internet Key Exchange Protocol Version 2
(IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
2014, <https://www.rfc-editor.org/info/rfc7296>.
[RFC6986] Dolmatov, V., Ed. and A. Degtyarev, "GOST R 34.11-2012:
Hash Function", RFC 6986, DOI 10.17487/RFC6986, August
2013, <https://www.rfc-editor.org/info/rfc6986>.
Smyslov Expires 11 August 2022 [Page 14]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
[RFC7801] Dolmatov, V., Ed., "GOST R 34.12-2015: Block Cipher
"Kuznyechik"", RFC 7801, DOI 10.17487/RFC7801, March 2016,
<https://www.rfc-editor.org/info/rfc7801>.
[RFC8891] Dolmatov, V., Ed. and D. Baryshkov, "GOST R 34.12-2015:
Block Cipher "Magma"", RFC 8891, DOI 10.17487/RFC8891,
September 2020, <https://www.rfc-editor.org/info/rfc8891>.
[RFC9058] Smyshlyaev, S., Ed., Nozdrunov, V., Shishkin, V., and E.
Griboedova, "Multilinear Galois Mode (MGM)", RFC 9058,
DOI 10.17487/RFC9058, June 2021,
<https://www.rfc-editor.org/info/rfc9058>.
[RFC7836] Smyshlyaev, S., Ed., Alekseev, E., Oshkin, I., Popov, V.,
Leontiev, S., Podobaev, V., and D. Belyavsky, "Guidelines
on the Cryptographic Algorithms to Accompany the Usage of
Standards GOST R 34.10-2012 and GOST R 34.11-2012",
RFC 7836, DOI 10.17487/RFC7836, March 2016,
<https://www.rfc-editor.org/info/rfc7836>.
8.2. Informative References
[GOST3411-2012]
Federal Agency on Technical Regulating and Metrology,
"Information technology. Cryptographic Data Security.
Hashing function", GOST R 34.11-2012, 2012. (In Russian)
[GOST3412-2015]
Federal Agency on Technical Regulating and Metrology,
"Information technology. Cryptographic data security.
Block ciphers", GOST R 34.12-2015, 2015. (In Russian)
[GOST-MGM] Federal Agency on Technical Regulating and Metrology,
"Information technology. Cryptographic data security.
Authenticated encryption block cipher operation modes",
R 1323565.1.026-2019, 2019. (In Russian)
[GOST-ESP] Federal Agency on Technical Regulating and Metrology,
"Information technology. Cryptographic data security.
Using Russian cryptographic algorithms in data security
protocol ESP", R 1323565.1.035-2021, 2021. (In Russian)
[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
Hashing for Message Authentication", RFC 2104,
DOI 10.17487/RFC2104, February 1997,
<https://www.rfc-editor.org/info/rfc2104>.
Smyslov Expires 11 August 2022 [Page 15]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
[RFC4106] Viega, J. and D. McGrew, "The Use of Galois/Counter Mode
(GCM) in IPsec Encapsulating Security Payload (ESP)",
RFC 4106, DOI 10.17487/RFC4106, June 2005,
<https://www.rfc-editor.org/info/rfc4106>.
[RFC4543] McGrew, D. and J. Viega, "The Use of Galois Message
Authentication Code (GMAC) in IPsec ESP and AH", RFC 4543,
DOI 10.17487/RFC4543, May 2006,
<https://www.rfc-editor.org/info/rfc4543>.
[RFC5282] Black, D. and D. McGrew, "Using Authenticated Encryption
Algorithms with the Encrypted Payload of the Internet Key
Exchange version 2 (IKEv2) Protocol", RFC 5282,
DOI 10.17487/RFC5282, August 2008,
<https://www.rfc-editor.org/info/rfc5282>.
[RFC8645] Smyshlyaev, S., Ed., "Re-keying Mechanisms for Symmetric
Keys", RFC 8645, DOI 10.17487/RFC8645, August 2019,
<https://www.rfc-editor.org/info/rfc8645>.
[MGM-SECURITY]
Akhmetzyanova, L., Alekseev, E., Karpunin, G., and V.
Nozdrunov, "Security of Multilinear Galois Mode (MGM)",
2019, <https://eprint.iacr.org/2019/123.pdf>.
[SP800-67] National Institute of Standards and Technology,
"Recommendation for the Triple Data Encryption Algorithm
(TDEA) Block Cipher", November 2017,
<https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-67r2.pdf>.
[I-D.irtf-cfrg-aead-limits]
Günther, F., Thomson, M., and C. A. Wood, "Usage Limits on
AEAD Algorithms", Work in Progress, Internet-Draft, draft-
irtf-cfrg-aead-limits-03, 12 July 2021,
<https://www.ietf.org/archive/id/draft-irtf-cfrg-aead-
limits-03.txt>.
Appendix A. Test Vectors
In the following test vectors binary data is represented in
hexadecimal format. The numbers in square bracket indicate the size
of the corresponding data in decimal format.
1. ENCR_KUZNYECHIK_MGM_KTREE, example 1:
Smyslov Expires 11 August 2022 [Page 16]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
transform key [44]:
b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
K [32]:
b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
salt [12]:
7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
K_msg [32]:
2f f1 c9 0e de 78 6e 06 1e 17 b3 74 d7 82 af 7b
d8 80 bd 52 7c 66 a2 ba dc 3e 56 9a ab 27 1d a4
nonce [16]:
00 00 00 00 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
IV [8]:
00 00 00 00 00 00 00 00
AAD [8]:
51 46 53 6b 00 00 00 01
plaintext [64]:
45 00 00 3c 23 35 00 00 7f 01 ee cc 0a 6f 0a c5
0a 6f 0a 1d 08 00 f3 5b 02 00 58 00 61 62 63 64
65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
ciphertext [64]:
18 9d 12 88 b7 18 f9 ea be 55 4b 23 9b ee 65 96
c6 d4 ea fd 31 64 96 ef 90 1c ac 31 60 05 aa 07
62 97 b2 24 bf 6d 2b e3 5f d6 f6 7e 7b 9d eb 31
85 ff e9 17 9c a9 bf 0b db af c2 3e ae 4d a5 6f
ESP ICV [12]:
50 b0 70 a1 5a 2b d9 73 86 89 f8 ed
ESP packet [112]:
45 00 00 70 00 4d 00 00 ff 32 91 4f 0a 6f 0a c5
0a 6f 0a 1d 51 46 53 6b 00 00 00 01 00 00 00 00
00 00 00 00 18 9d 12 88 b7 18 f9 ea be 55 4b 23
9b ee 65 96 c6 d4 ea fd 31 64 96 ef 90 1c ac 31
60 05 aa 07 62 97 b2 24 bf 6d 2b e3 5f d6 f6 7e
7b 9d eb 31 85 ff e9 17 9c a9 bf 0b db af c2 3e
ae 4d a5 6f 50 b0 70 a1 5a 2b d9 73 86 89 f8 ed
2. ENCR_KUZNYECHIK_MGM_KTREE, example 2:
Smyslov Expires 11 August 2022 [Page 17]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
transform key [44]:
b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
K [32]:
b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
salt [12]:
7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
i1 = 00, i2 = 0001, i3 = 0001, pnum = 000000
K_msg [32]:
9a ba c6 57 78 18 0e 6f 2a f6 1f b8 d5 71 62 36
66 c2 f5 13 0d 54 e2 11 6c 7d 53 0e 6e 7d 48 bc
nonce [16]:
00 00 00 00 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
IV [8]:
00 00 01 00 01 00 00 00
AAD [8]:
51 46 53 6b 00 00 00 10
plaintext [64]:
45 00 00 3c 23 48 00 00 7f 01 ee b9 0a 6f 0a c5
0a 6f 0a 1d 08 00 e4 5b 02 00 67 00 61 62 63 64
65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
ciphertext [64]:
78 0a 2c 62 62 32 15 7b fe 01 76 32 f3 2d b4 d0
a4 fa 61 2f 66 c2 bf 79 d5 e2 14 9b ac 1d fc 4b
15 4b 69 03 4d c2 1d ef 20 90 6d 59 62 81 12 7c
ff 72 56 ab f0 0b a1 22 bb 5e 6c 71 a4 d4 9a 4d
ESP ICV [12]:
c2 2f 87 40 83 8e 3d fa ce 91 cc b8
ESP packet [112]:
45 00 00 70 00 5c 00 00 ff 32 91 40 0a 6f 0a c5
0a 6f 0a 1d 51 46 53 6b 00 00 00 10 00 00 01 00
01 00 00 00 78 0a 2c 62 62 32 15 7b fe 01 76 32
f3 2d b4 d0 a4 fa 61 2f 66 c2 bf 79 d5 e2 14 9b
ac 1d fc 4b 15 4b 69 03 4d c2 1d ef 20 90 6d 59
62 81 12 7c ff 72 56 ab f0 0b a1 22 bb 5e 6c 71
a4 d4 9a 4d c2 2f 87 40 83 8e 3d fa ce 91 cc b8
3. ENCR_MAGMA_MGM_KTREE, example 1:
Smyslov Expires 11 August 2022 [Page 18]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
transform key [36]:
5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
cf 36 63 12
K [32]:
5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
salt [4]:
cf 36 63 12
i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
K_msg [32]:
25 65 21 e2 70 b7 4a 16 4d fc 26 e6 bf 0c ca 76
5e 9d 41 02 7d 4b 7b 19 76 2b 1c c9 01 dc de 7f
nonce [8]:
00 00 00 00 cf 36 63 12
IV [8]:
00 00 00 00 00 00 00 00
AAD [8]:
c8 c2 b2 8d 00 00 00 01
plaintext [64]:
45 00 00 3c 24 2d 00 00 7f 01 ed d4 0a 6f 0a c5
0a 6f 0a 1d 08 00 de 5b 02 00 6d 00 61 62 63 64
65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
ciphertext [64]:
fa 08 40 33 2c 4f 3f c9 64 4d 8c 2c 4a 91 7e 0c
d8 6f 8e 61 04 03 87 64 6b b9 df bd 91 50 3f 4a
f5 d2 42 69 49 d3 5a 22 9e 1e 0e fc 99 ac ee 9e
32 43 e2 3b a4 d1 1e 84 5c 91 a7 19 15 52 cc e8
ESP ICV [8]:
5f 4a fa 8b 02 94 0f 5c
ESP packet [108]:
45 00 00 6c 00 62 00 00 ff 32 91 3e 0a 6f 0a c5
0a 6f 0a 1d c8 c2 b2 8d 00 00 00 01 00 00 00 00
00 00 00 00 fa 08 40 33 2c 4f 3f c9 64 4d 8c 2c
4a 91 7e 0c d8 6f 8e 61 04 03 87 64 6b b9 df bd
91 50 3f 4a f5 d2 42 69 49 d3 5a 22 9e 1e 0e fc
99 ac ee 9e 32 43 e2 3b a4 d1 1e 84 5c 91 a7 19
15 52 cc e8 5f 4a fa 8b 02 94 0f 5c
4. ENCR_MAGMA_MGM_KTREE, example 2:
Smyslov Expires 11 August 2022 [Page 19]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
transform key [36]:
5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
cf 36 63 12
K [32]:
5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
salt [4]:
cf 36 63 12
i1 = 00, i2 = 0001, i3 = 0001, pnum = 000000
K_msg [32]:
20 e0 46 d4 09 83 9b 23 f0 66 a5 0a 7a 06 5b 4a
39 24 4f 0e 29 ef 1e 6f 2e 5d 2e 13 55 f5 da 08
nonce [8]:
00 00 00 00 cf 36 63 12
IV [8]:
00 00 01 00 01 00 00 00
AAD [8]:
c8 c2 b2 8d 00 00 00 10
plaintext [64]:
45 00 00 3c 24 40 00 00 7f 01 ed c1 0a 6f 0a c5
0a 6f 0a 1d 08 00 cf 5b 02 00 7c 00 61 62 63 64
65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
ciphertext [64]:
7a 71 48 41 a5 34 b7 58 93 6a 8e ab 26 91 40 a8
25 a7 f3 5d b9 e4 37 1f e7 6c 99 9c 9b 88 db 72
1d c7 59 f6 56 b5 b3 ea b6 b1 4d 6b d7 7a 07 1d
4b 93 78 bd 08 97 6c 33 ed 9a 01 91 bf fe a1 dd
ESP ICV [8]:
dd 5d 50 9a fd b8 09 98
ESP packet [108]:
45 00 00 6c 00 71 00 00 ff 32 91 2f 0a 6f 0a c5
0a 6f 0a 1d c8 c2 b2 8d 00 00 00 10 00 00 01 00
01 00 00 00 7a 71 48 41 a5 34 b7 58 93 6a 8e ab
26 91 40 a8 25 a7 f3 5d b9 e4 37 1f e7 6c 99 9c
9b 88 db 72 1d c7 59 f6 56 b5 b3 ea b6 b1 4d 6b
d7 7a 07 1d 4b 93 78 bd 08 97 6c 33 ed 9a 01 91
bf fe a1 dd dd 5d 50 9a fd b8 09 98
5. ENCR_KUZNYECHIK_MGM_MAC_KTREE, example 1:
Smyslov Expires 11 August 2022 [Page 20]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
transform key [44]:
98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
6c 51 cb ac 93 c4 5b ea 99 62 79 1d
K [32]:
98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
salt [12]:
6c 51 cb ac 93 c4 5b ea 99 62 79 1d
i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
K_msg [32]:
98 f1 03 01 81 0a 04 1c da dd e1 bd 85 a0 8f 21
8b ac b5 7e 00 35 e2 22 c8 31 e3 e4 f0 a2 0c 8f
nonce [16]:
00 00 00 00 6c 51 cb ac 93 c4 5b ea 99 62 79 1d
IV [8]:
00 00 00 00 00 00 00 00
AAD [80]:
3d ac 92 6a 00 00 00 01 00 00 00 00 00 00 00 00
45 00 00 3c 0c f1 00 00 7f 01 05 11 0a 6f 0a c5
0a 6f 0a 1d 08 00 48 5c 02 00 03 00 61 62 63 64
65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
plaintext [0]:
ciphertext [0]:
ESP ICV [12]:
ca c5 8c e5 e8 8b 4b f3 2d 6c f0 4d
ESP packet [112]:
45 00 00 70 00 01 00 00 ff 32 91 9b 0a 6f 0a c5
0a 6f 0a 1d 3d ac 92 6a 00 00 00 01 00 00 00 00
00 00 00 00 45 00 00 3c 0c f1 00 00 7f 01 05 11
0a 6f 0a c5 0a 6f 0a 1d 08 00 48 5c 02 00 03 00
61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
01 02 02 04 ca c5 8c e5 e8 8b 4b f3 2d 6c f0 4d
6. ENCR_KUZNYECHIK_MGM_MAC_KTREE, example 2:
Smyslov Expires 11 August 2022 [Page 21]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
transform key [44]:
98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
6c 51 cb ac 93 c4 5b ea 99 62 79 1d
K [32]:
98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
salt [12]:
6c 51 cb ac 93 c4 5b ea 99 62 79 1d
i1 = 00, i2 = 0000, i3 = 0001, pnum = 000000
K_msg [32]:
02 c5 41 87 7c c6 23 f3 f1 35 91 9a 75 13 b6 f8
a8 a1 8c b2 63 99 86 2f 50 81 4f 52 91 01 67 84
nonce [16]:
00 00 00 00 6c 51 cb ac 93 c4 5b ea 99 62 79 1d
IV [8]:
00 00 00 00 01 00 00 00
AAD [80]:
3d ac 92 6a 00 00 00 06 00 00 00 00 01 00 00 00
45 00 00 3c 0c fb 00 00 7f 01 05 07 0a 6f 0a c5
0a 6f 0a 1d 08 00 43 5c 02 00 08 00 61 62 63 64
65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
plaintext [0]:
ciphertext [0]:
ESP ICV [12]:
ba bc 67 ec 72 a8 c3 1a 89 b4 0e 91
ESP packet [112]:
45 00 00 70 00 06 00 00 ff 32 91 96 0a 6f 0a c5
0a 6f 0a 1d 3d ac 92 6a 00 00 00 06 00 00 00 00
01 00 00 00 45 00 00 3c 0c fb 00 00 7f 01 05 07
0a 6f 0a c5 0a 6f 0a 1d 08 00 43 5c 02 00 08 00
61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
01 02 02 04 ba bc 67 ec 72 a8 c3 1a 89 b4 0e 91
7. ENCR_MAGMA_MGM_MAC_KTREE, example 1:
Smyslov Expires 11 August 2022 [Page 22]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
transform key [36]:
d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
88 79 8f 29
K [32]:
d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
salt [4]:
88 79 8f 29
i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
K_msg [32]:
4c 61 45 99 a0 a0 67 f1 94 87 24 0a e1 00 e1 b7
ea f2 3e da f8 7e 38 73 50 86 1c 68 3b a4 04 46
nonce [8]:
00 00 00 00 88 79 8f 29
IV [8]:
00 00 00 00 00 00 00 00
AAD [80]:
3e 40 69 9c 00 00 00 01 00 00 00 00 00 00 00 00
45 00 00 3c 0e 08 00 00 7f 01 03 fa 0a 6f 0a c5
0a 6f 0a 1d 08 00 36 5c 02 00 15 00 61 62 63 64
65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
plaintext [0]:
ciphertext [0]:
ESP ICV [8]:
4d d4 25 8a 25 35 95 df
ESP packet [108]:
45 00 00 6c 00 13 00 00 ff 32 91 8d 0a 6f 0a c5
0a 6f 0a 1d 3e 40 69 9c 00 00 00 01 00 00 00 00
00 00 00 00 45 00 00 3c 0e 08 00 00 7f 01 03 fa
0a 6f 0a c5 0a 6f 0a 1d 08 00 36 5c 02 00 15 00
61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
01 02 02 04 4d d4 25 8a 25 35 95 df
8. ENCR_MAGMA_MGM_MAC_KTREE, example 2:
Smyslov Expires 11 August 2022 [Page 23]
Internet-Draft GOST ciphers in ESP & IKEv2 February 2022
transform key [36]:
d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
88 79 8f 29
K [32]:
d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
salt [4]:
88 79 8f 29
i1 = 00, i2 = 0000, i3 = 0001, pnum = 000000
K_msg [32]:
b4 f3 f9 0d c4 87 fa b8 c4 af d0 eb 45 49 f2 f0
e4 36 32 b6 79 19 37 2e 1e 96 09 ea f0 b8 e2 28
nonce [8]:
00 00 00 00 88 79 8f 29
IV [8]:
00 00 00 00 01 00 00 00
AAD [80]:
3e 40 69 9c 00 00 00 06 00 00 00 00 01 00 00 00
45 00 00 3c 0e 13 00 00 7f 01 03 ef 0a 6f 0a c5
0a 6f 0a 1d 08 00 31 5c 02 00 1a 00 61 62 63 64
65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
plaintext [0]:
ciphertext [0]:
ESP ICV [8]:
84 84 a9 23 30 a0 b1 96
ESP packet [108]:
45 00 00 6c 00 18 00 00 ff 32 91 88 0a 6f 0a c5
0a 6f 0a 1d 3e 40 69 9c 00 00 00 06 00 00 00 00
01 00 00 00 45 00 00 3c 0e 13 00 00 7f 01 03 ef
0a 6f 0a c5 0a 6f 0a 1d 08 00 31 5c 02 00 1a 00
61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
01 02 02 04 84 84 a9 23 30 a0 b1 96
Author's Address
Valery Smyslov
ELVIS-PLUS
PO Box 81
Moscow (Zelenograd)
124460
Russian Federation
Phone: +7 495 276 0211
Email: svan@elvis.ru
Smyslov Expires 11 August 2022 [Page 24]