Internet DRAFT - draft-ye-ccamp-mw-topo-yang
draft-ye-ccamp-mw-topo-yang
CCAMP Working Group M. Ye, Ed.
Internet-Draft A. Guo
Intended status: Standards Track Huawei Technologies
Expires: April 25, 2019 J. Ahlberg
Ericsson AB
X. Li
NEC Laboratories Europe GmbH
D. Spreafico
Nokia - IT
October 22, 2018
A YANG Data Model for Microwave Topology
draft-ye-ccamp-mw-topo-yang-02
Abstract
This document defines a YANG data model to describe the topologies of
microwave/millimeter.
Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on April 25, 2019.
Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
Ye, et al. Expires April 25, 2019 [Page 1]
Internet-Draft Microwave Topology Model October 2018
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Terminology and Definitions . . . . . . . . . . . . . . . . . 2
2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
3. YANG Data Model (Tree Structure) . . . . . . . . . . . . . . 3
3.1. The YANG Tree . . . . . . . . . . . . . . . . . . . . . . 3
3.2. Relationship with microwave interface YANG model . . . . 4
3.3. Relationship with client topology model . . . . . . . . . 4
3.4. Model applicability to other technology . . . . . . . . . 4
4. YANG Module . . . . . . . . . . . . . . . . . . . . . . . . . 5
5. Security Considerations . . . . . . . . . . . . . . . . . . . 8
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 9
7. References . . . . . . . . . . . . . . . . . . . . . . . . . 9
7.1. Normative References . . . . . . . . . . . . . . . . . . 9
7.2. Informative References . . . . . . . . . . . . . . . . . 10
Appendix A. Appendix A Examples of microwave topology . . . . . 11
A.1. Appendix A.1 A topology with single microwave radio link 11
A.2. Appendix A.2 A topology with microwave radio links
bundling . . . . . . . . . . . . . . . . . . . . . . . . 13
Appendix B. Contributors . . . . . . . . . . . . . . . . . . . . 17
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 17
1. Terminology and Definitions
The following acronyms are used in this document:
PNC Provisioning Network Controller
MDSC Multi Domain Service Coordinator
2. Introduction
This document defines a YANG data model to describe the topologies of
microwave/millimeter(hereafter microwave is used to simplify the
text). The microwave topology model augments the TE topology model
defines in [I-D.ietf-teas-yang-te-topo].
Ye, et al. Expires April 25, 2019 [Page 2]
Internet-Draft Microwave Topology Model October 2018
The microwave topology model is expected to be used between a
Provisioning Network Controller(PNC) and a Multi Domain Service
Coordinator(MDSC)([RFC8453]). Possible use cases of microwave
topology models include:
1. The microwave link frequency could be used to understand the
current frequency usage, enabling a whole view of the network
topology information, and as an input for network frequency
planning.
2. The microwave radio link could change its bandwidth according to
the environments under the adaptive modulation mode, e.g., the
bandwidth will degrade when there's a heavy rain. To get to know
of current microwave link bandwidth is important for path
computation and service provisioning across different
technologies/networks.
3. Due to bandwidth changing feature, availability is normally used
to describe the microwave radio link characteristic. [RFC8330]
defines a mechanism to report bandwidth-availability information
through OSPF-TE. It's also necessary to include the information
in the YANG data model to optimize the path/route computation.
3. YANG Data Model (Tree Structure)
3.1. The YANG Tree
module: ietf-microwave-topology
augment /nw:networks/nw:network/nw:network-types/tet:te-topology:
+--rw mw-topology!
augment /nw:networks/nw:network/nt:link/tet:te/tet:te-link-attributes:
+--rw mw-link-frequency? uint32
+--rw mw-link-channel-separation? uint32
+--ro mw-link-nominal-bandwidth? uint64
+--ro mw-link-current-bandwidth? uint64
+--ro mw-link-unreserved-bandwidth uint64
+--rw mw-link-availability* [availability]
+--rw availability decimal64
+--ro mw-link-bandwidth uint64
augment /nw:networks/nw:network/nw:node/nt:termination-point /tet:te:
+-- mp interface-root?
Ye, et al. Expires April 25, 2019 [Page 3]
Internet-Draft Microwave Topology Model October 2018
3.2. Relationship with microwave interface YANG model
The microwave topology model is expected to be used between a PNC and
a MDSC. [I-D.ietf-ccamp-mw-yang] defines an interface YANG model for
microwave radio link which is used between the PNC and the physical
device for device configuration. The PNC is able to convert the
information received from the topology model into the interface
model. For example, the link frequency in the topology model is
mapped to the tx-frequency of the carrier termination in the
interface model.
If the purpose is to access more information of the microwave
interface YANG model through the microwave topology model, a schema
mount mechanism could be used, see the "interface-root" in the
microwave topology model. [I-D.ietf-netmod-schema-mount] defines a
mechanism to add the schema trees defined by a set of YANG modules
onto a mount point defined in the schema tree in some YANG module.
The current defined schema mount mechanism allows mounting of
complete data models only. If complete mounting of the microwave
interface YANG model is not neceesary, a deviation model could be
created to remove unneeded schema in the microwave interface model,
and be mounted to the topology model.
3.3. Relationship with client topology model
Ethernet is the most common client signal over microwave link. The
Ethernet topology is an overlay TE topology on microwave topology.
When an ETH service is transported by a single microwave radio link,
the ETH link is supported by the microwave tunnel in underlay
microwave topology, the microwave tunnel is supported by the
microwave link. Please be noted that the tunnel in microwave
topology is normally one-hop tunnel without intermediate node.
Appendix A.1 shows some JSON example of Ethernet link over single
microwave link. When an ETH service is transported over two
microwave radio links, the ETH link is supported by the microwave
tunnel in underlay microwave topology, the microwave tunnel is
supported by the two microwave links. TTP Local Link Connectivity
List is a List of TE links terminated by the TTP hosting TE
node[I-D.ietf-teas-yang-te-topo]. It's used to associated with the
two LTP to the TTP in microwave topology. Appendix A.2 shows some
JSON example of Ethernet link over two microwave links.
3.4. Model applicability to other technology
TBA
Ye, et al. Expires April 25, 2019 [Page 4]
Internet-Draft Microwave Topology Model October 2018
4. YANG Module
<CODE BEGINS> file "ietf-microwave-topology.yang"
module ietf-microwave-topology {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-microwave-topology";
prefix "mwtopo";
import ietf-network {
prefix "nw";
}
import ietf-network-topology {
prefix "nt";
}
import ietf-te-topology {
prefix "tet";
}
/*
*import ietf-routing-types {
* prefix "rt-types";
* }
*/
import ietf-yang-schema-mount {
prefix yangmnt;
reference "draft-ietf-netmod-schema-mount: YANG Schema Mount";
}
organization
"Internet Engineering Task Force (IETF) CCAMP WG";
contact
"
WG List: <mailto:ccamp@ietf.org>
ID-draft authors:
Min Ye (amy.yemin@huawei.com);
Aihua Guo (aihuaguo@huawei.com);
Jonas Ahlberg (jonas.ahlberg@ericsson.com);
Xi Li (Xi.Li@neclab.eu);
Daniela Spreafico (daniela.spreafico@nokia.com)
";
Ye, et al. Expires April 25, 2019 [Page 5]
Internet-Draft Microwave Topology Model October 2018
description
"This is a module for microwave topology.";
revision 2018-10-22 {
description
"change the type of serveral data nodes.";
reference "";
}
revision 2018-06-30 {
description
"Updated version to add mount point to the interface model.";
reference "";
}
revision 2018-03-05 {
description
"Initial version.";
reference "";
}
feature root-radio-if{
description
"This feature means that root for microwave radio
interface model is supported.";
}
/*
* Groupings
*/
grouping mw-link-attributes {
description "Microwave link attributes";
leaf mw-link-frequency {
type uint32;
units "kHz";
description "Frequency of the link";
}
leaf mw-link-channel-separation {
type uint32;
units "kHz";
description "The distance
between adjacent channels in a radio frequency channel
arrangement used in this link";
reference "ETSI EN 302 217-1";
}
leaf mw-link-nominal-bandwidth {
Ye, et al. Expires April 25, 2019 [Page 6]
Internet-Draft Microwave Topology Model October 2018
type uint64;
units "Kbps";
config false;
description "The nominal bandwidth of the link";
}
leaf mw-link-current-bandwidth {
type uint64;
units "Kbps";
config false;
description "The current bandwidth of the link";
}
leaf mw-link-unreserved-bandwidth {
type uint64;
units "Kbps";
config false;
description "The unreserved bandwidth of the link is
mw-link-current-bandwidth minus occupied bandwidth
on mw link";
}
list mw-link-availability{
key "availability";
description "List of availability and corresponding
link bandwidth";
leaf availability {
type decimal64 {
fraction-digits 4;
range "0..99.9999";
}
description "Availability level of the link";
}
leaf mw-link-bandwidth {
type uint64;
units "Kbps";
config false;
description "The link bandwidth corresponding
to the availability level";
}
}
container "interface-root" {
if-feature root-radio-if;
description
"Container for mount point.";
Ye, et al. Expires April 25, 2019 [Page 7]
Internet-Draft Microwave Topology Model October 2018
yangmnt:mount-point "interface-root" {
description
"Root for microwave radio interface model.
It could contain an interface instance.";
}
}
}
/*
* Data nodes
*/
augment "/nw:networks/nw:network/nw:network-types/"
+ "tet:te-topology" {
container mw-topology {
presence "indicates a topology type of microwave.";
description "microwave topology type";
}
description "augment network types to include microwave network";
}
augment "/nw:networks/nw:network/nt:link/tet:te/"
+ "tet:te-link-attributes" {
when "../../../nw:network-types/tet:te-topology/"
+ "mwtopo:mw-topology" {
description "This augment is only valid for microwave.";
}
description "Microwave link augmentation";
uses mw-link-attributes;
}
}
<CODE ENDS>
5. Security Considerations
The YANG module specified in this document defines a schema for data
that is designed to be accessed via network management protocols such
as NETCONF [RFC6241] or RESTCONF [RFC8040][RFC8040]. The lowest
NETCONF layer is the secure transport layer, and the mandatory-to-
implement secure transport is Secure Shell (SSH) [RFC6242]. The
lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure
transport is TLS [RFC8446].
The NETCONF access control model [RFC8341] provides the means to
restrict access for particular NETCONF or RESTCONF users to a
Ye, et al. Expires April 25, 2019 [Page 8]
Internet-Draft Microwave Topology Model October 2018
preconfigured subset of all available NETCONF or RESTCONF protocol
operations and content.
There are a number of data nodes defined in this YANG module that are
writable/creatable/deletable (i.e., config true, which is the
default). These data nodes may be considered sensitive or vulnerable
in some network environments. Write operations (e.g., edit-config)
to these data nodes without proper protection can have a negative
effect on network operations. These are the subtrees and data nodes
and their sensitivity/vulnerability:
TBD.(list subtrees and data nodes and state why they are sensitive)
Some of the readable data nodes in this YANG module may be considered
sensitive or vulnerable in some network environments. It is thus
important to control read access (e.g., via get, get-config, or
notification) to these data nodes. These are the subtrees and data
nodes and their sensitivity/vulnerability:
TBD.(list subtrees and data nodes and state why they are sensitive)
6. IANA Considerations
IANA has assigned a new URI from the "IETF XML Registry" [RFC3688].
URI: urn:ietf:params:xml:ns:yang:ietf-microwave-topology
Registrant Contact: The IESG
XML: N/A; the requested URI is an XML namespace.
IANA has recorded a YANG module name in the "YANG Module Names"
registry [RFC6020] as follows:
Name: ietf-microwave-topology
Namespace: urn:ietf:params:xml:ns:yang:ietf-microwave-topology
Prefix: mwtopo
Reference: RFC xxxx
7. References
7.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
Ye, et al. Expires April 25, 2019 [Page 9]
Internet-Draft Microwave Topology Model October 2018
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc-editor.org/info/rfc3688>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
<https://www.rfc-editor.org/info/rfc6020>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
<https://www.rfc-editor.org/info/rfc6242>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
Access Control Model", STD 91, RFC 8341,
DOI 10.17487/RFC8341, March 2018,
<https://www.rfc-editor.org/info/rfc8341>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.
7.2. Informative References
[I-D.ietf-ccamp-mw-yang]
Ahlberg, J., Ye, M., Li, X., Spreafico, D., and M.
Vaupotic, "A YANG Data Model for Microwave Radio Link",
draft-ietf-ccamp-mw-yang-10 (work in progress), October
2018.
[I-D.ietf-netmod-schema-mount]
Bjorklund, M. and L. Lhotka, "YANG Schema Mount", draft-
ietf-netmod-schema-mount-12 (work in progress), October
2018.
Ye, et al. Expires April 25, 2019 [Page 10]
Internet-Draft Microwave Topology Model October 2018
[I-D.ietf-teas-yang-te-topo]
Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
O. Dios, "YANG Data Model for Traffic Engineering (TE)
Topologies", draft-ietf-teas-yang-te-topo-18 (work in
progress), June 2018.
[RFC8330] Long, H., Ye, M., Mirsky, G., D'Alessandro, A., and H.
Shah, "OSPF Traffic Engineering (OSPF-TE) Link
Availability Extension for Links with Variable Discrete
Bandwidth", RFC 8330, DOI 10.17487/RFC8330, February 2018,
<https://www.rfc-editor.org/info/rfc8330>.
[RFC8453] Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for
Abstraction and Control of TE Networks (ACTN)", RFC 8453,
DOI 10.17487/RFC8453, August 2018,
<https://www.rfc-editor.org/info/rfc8453>.
Appendix A. Appendix A Examples of microwave topology
A.1. Appendix A.1 A topology with single microwave radio link
Microwave is a transport technology which can be used to transport
client services, such as ETH. When an ETH service is transported by
a single microwave radio link, the topology could be shown as the
Figure 3. Note that the figure just shows an example, there might be
other possiblities to demonstrate the topology.
Node 1 Node 2
+---------------+ +---------------+
| | | |
| +-----------+ | | +-----------+ |
| | LTP11 | | | | LTP21 | | --ETH topo
| +-------o---+ | ETH-TE-Link-1 | +---o-------+ |
| |---------------------------------| |
| | | |
| +-----------+ | | +-----------+ |
| | TTP-1 __ | | microwave tunnel-11 | | __ TTP-1 | |
| | \/@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\/ | |
| | * | | | | * | | --Microwave topo
| | * | | microwave link 12 | | * | |
| | LTP-1 *o ------------------------o* LTP-1 | |
| | | | | | | |
| +-----------+ | | +-----------+ |
| | | |
+---------------+ +---------------+
Figure 3: ETH transported on a single microwave radio link
Ye, et al. Expires April 25, 2019 [Page 11]
Internet-Draft Microwave Topology Model October 2018
In the above ETH topology, the ETH-TE-link is encoded in JSON as
below:
...
"ietf-network-topology:link": [
{
"link-id": "N1,LTP11,N2,LTP21",
"source": {
"source-node": "N1",
"source-tp": "LTP11"
}
"destination": {
"dest-node": "N2",
"dest-tp": "LTP21"
}
}
]
"ietf-te-topology:link/te/te-link-attributes/": [
{
"ietf-te-topology:underlay": {
"enabled": ture,
"primary-path":{
"path-element": {
"path-element-id": "MW-11"
//no backup-path
//no protection-type
}
}
"tunnel-termination-points": {
"source": "N1/TTP-1",
"destination": "N2/TTP-1"
}
"tunnels" : {
"sharing": "false",
"tunnel":{
"tunnel-name": "MW-11",
"sharing": "false"
}
}
}
}
]
Note that the example above just shows the particular ETH link, not
the full ETH topology.
In the microwave topology, the microwave link is encoded in JSON as
below:
Ye, et al. Expires April 25, 2019 [Page 12]
Internet-Draft Microwave Topology Model October 2018
...
"ietf-network-topology:link": [
{
"link-id": "N1,LTP1,N2,LTP1",
"source": {
"source-node": "N1",
"source-tp": "LTP1"
}
"destination": {
"dest-node": "N2",
"dest-tp": "LTP1"
}
}
]
"ietf-te-topology:link/te/te-link-attributes": [
{
"ietf-microwave-topology:mw-link-frequency": 10728000,
"ietf-microwave-topology:mw-link-channel-separation": "28000",
"ietf-microwave-topology:mw-link-nominal-bandwidth": "1000",
"ietf-microwave-topology:mw-link-current-bandwidth": "1000",
"ietf-microwave-topology:mw-link-unreserved-bandwidth": "400",
"ietf-microwave-topology:mw-link-availability":{
"availability":"99.99",
"mw-link-bandwidth": "1000"
}
}
]
A.2. Appendix A.2 A topology with microwave radio links bundling
When a ETH service is transported over two microwave radio links, the
topologies could be shown as in Figure 4. Note that the figure just
shows one example, there might be other possiblities to demonstrate
the topology.
Ye, et al. Expires April 25, 2019 [Page 13]
Internet-Draft Microwave Topology Model October 2018
Node 1 Node 2
+---------------+ +---------------+
| | | |
| +-----------+ | | +-----------+ |
| | LTP11 | | | | LTP21 | | --ETH topo
| +-------o---+ | ETH-TE-Link-1 | +---o-------+ |
| |---------------------------------| |
| | | |
| +-----------+ | | +-----------+ |
| | TTP-1 __ | | microwave tunnel-11 | | __ TTP-1 | |
| | \/@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\/ | |
| | ** | | | | ** | | --Microwave topo
| | ** | | microwave link 22 | | ** | |
| | LTP-2**o ------------------------o**LTP-2 | |
| | LTP-1 *o ------------------------o* LTP-1 | |
| | | | microwave link 11 | | | |
| +-----------+ | | +-----------+ |
| | | |
+---------------+ +---------------+
Figure 4: ETH transported on two microwave radio links
In the ETH topology, the ETH-TE-link is encoded in JSON as below:
Ye, et al. Expires April 25, 2019 [Page 14]
Internet-Draft Microwave Topology Model October 2018
...
"ietf-network-topology:link": [
{
"link-id": "N1,LTP11,N2,LTP21",
"source": {
"source-node": "N1",
"source-tp": "LTP11"
}
"destination": {
"dest-node": "N2",
"dest-tp": "LTP21"
}
}
]
"ietf-te-topology:link/te/te-link-attributes/": [
{
"ietf-te-topology:underlay": {
"enabled": ture,
"primary-path":{
"path-element": {
"path-element-id": "MW-11"
//no backup-path
//no protection-type
}
}
"tunnel-termination-points": {
"source": "N1/TTP-1",
"destination": "N2/TTP-1"
}
"tunnels" : {
"sharing": "false",
"tunnel":{
"tunnel-name": "MW-11",
"sharing": "false"
}
}
}
}
]
Note that the example above just shows the specific ETH link, not the
full ETH topology.
In the microwave topology, the micorwave link is encoded in JSON as
below:
...
Ye, et al. Expires April 25, 2019 [Page 15]
Internet-Draft Microwave Topology Model October 2018
"ietf-network-topology:link": [
{
"link-id": "N1,LTP1,N2,LTP1",
"source": {
"source-node": "N1",
"source-tp": "LTP1"
}
"destination": {
"dest-node": "N2",
"dest-tp": "LTP1"
}
"ietf-te-topology:link/te/te-link-attributes": [
{
"ietf-microwave-topology:mw-link-frequency": 10728000,
"ietf-microwave-topology:mw-link-channel-separation": "28000",
"ietf-microwave-topology:mw-link-nominal-bandwidth": "1000",
"ietf-microwave-topology:mw-link-current-bandwidth": "1000",
"ietf-microwave-topology:mw-link-unreserved-bandwidth": "400",
"ietf-microwave-topology:mw-link-availability":{
"availability":"99.99",
"mw-link-bandwidth": "1000"
}
}
]
}
{
"link-id": "N1,LTP1,N2,LTP1",
"source": {
"source-node": "N1",
"source-tp": "LTP2"
}
"destination": {
"dest-node": "N2",
"dest-tp": "LTP2"
}
"ietf-te-topology:link/te/te-link-attributes": [
{
"ietf-microwave-topology:mw-link-frequency": 10756000,
"ietf-microwave-topology:mw-link-channel-separation": "28000",
"ietf-microwave-topology:mw-link-nominal-bandwidth": "1000",
"ietf-microwave-topology:mw-link-current-bandwidth": "1000",
"ietf-microwave-topology:mw-link-unreserved-bandwidth": "400",
"ietf-microwave-topology:mw-link-availability":{
"availability":"99.99",
"mw-link-bandwidth": "1000"
}
}
]
Ye, et al. Expires April 25, 2019 [Page 16]
Internet-Draft Microwave Topology Model October 2018
}
]
"ietf-te-topology:node/te/tunnel-termination-point/"
+"local-link-connectivities":{
"te-node-tunnel-termination-point-llc-list":[
{
"link-tp-ref": LTP1
}
{
"link-tp-ref": LTP2
}
]
}
Note that the example above just shows the microwave component links,
it doesn't show the full microwave topology.
Appendix B. Contributors
Italo Busi
Huawei Technologies
Email: italo.busi@huawei.com
Xufeng Liu
Jabil
Email: Xufeng_Liu@jabil.com
Authors' Addresses
Ye Min (editor)
Huawei Technologies
No.1899, Xiyuan Avenue
Chengdu 611731
P.R.China
Email: amy.yemin@huawei.com
Aihua Guo
Huawei Technologies
Email: aihuaguo@huawei.comm
Ye, et al. Expires April 25, 2019 [Page 17]
Internet-Draft Microwave Topology Model October 2018
Jonas Ahlberg
Ericsson AB
Lindholmspiren 11
Goteborg 417 56
Sweden
Email: jonas.ahlberg@ericsson.com
Xi Li
NEC Laboratories Europe GmbH
Kurfuersten-Anlage 36
Heidelberg 69115
Germany
Email: Xi.Li@neclab.eu
Daniela Spreafico
Nokia - IT
Via Energy Park, 14
Vimercate (MI) 20871
Italy
Email: daniela.spreafico@nokia.com
Ye, et al. Expires April 25, 2019 [Page 18]