Internet DRAFT - draft-yu-ccamp-te-fgnm-yang
draft-yu-ccamp-te-fgnm-yang
CCAMP Working Group C. Yu
Internet-Draft Huawei Technologies
Intended status: Standards Track Xing. Zhao
Expires: 5 September 2024 CAICT
4 March 2024
YANG Data Models for Transport TE FGNM Extension Model
draft-yu-ccamp-te-fgnm-yang-00
Abstract
This document defines two extension YANG data models augmenting to TE
topology and TE tunnel YANG model, based on the FGNM (Fine-Grain
Network Management) requirements in transport networks.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 5 September 2024.
Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.
Yu & Zhao Expires 5 September 2024 [Page 1]
Internet-Draft TE FGNM YANG March 2024
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Terminology and Notations . . . . . . . . . . . . . . . . 3
1.2. Tree Diagram . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Prefix in Data Node Names . . . . . . . . . . . . . . . . 4
2. Mapping of ACTN modelling Objects with TMF objects . . . . . 4
3. Model Relationship . . . . . . . . . . . . . . . . . . . . . 6
4. FGNM Topology . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1. FGNM extension for TE topology . . . . . . . . . . . . . 9
4.2. The Modelling and Usage of TTP . . . . . . . . . . . . . 9
5. FGNM Extensions for TE Tunnel . . . . . . . . . . . . . . . . 10
5.1. Modelling of Point to Multi-Points and Multi-Points to
Multi-Points TE Tunnel . . . . . . . . . . . . . . . . . 10
5.2. Restoration . . . . . . . . . . . . . . . . . . . . . . . 10
5.2.1. Lock of Restoration . . . . . . . . . . . . . . . . . 10
5.2.2. Lock of Restoration Reversion . . . . . . . . . . . . 11
5.2.3. Scheduling of Reversion Time . . . . . . . . . . . . 11
5.2.4. Priority of Restoration . . . . . . . . . . . . . . . 11
5.2.5. YANG for Restoration Extension . . . . . . . . . . . 11
5.3. TTP Hop . . . . . . . . . . . . . . . . . . . . . . . . . 11
6. Tree Diagram . . . . . . . . . . . . . . . . . . . . . . . . 14
6.1. FGNM Extension for TE Topology . . . . . . . . . . . . . 14
6.2. FGNM Extension for TE Tunnel . . . . . . . . . . . . . . 14
7. YANG Data Model . . . . . . . . . . . . . . . . . . . . . . . 16
7.1. FGNM Extensin for TE Topology . . . . . . . . . . . . . . 16
7.2. FGNM Extensin for TE Tunnel . . . . . . . . . . . . . . . 20
8. Manageability Considerations . . . . . . . . . . . . . . . . 25
9. Security Considerations . . . . . . . . . . . . . . . . . . . 25
10. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 25
11. Normative References . . . . . . . . . . . . . . . . . . . . 25
Appendix A. Appendix . . . . . . . . . . . . . . . . . . . . . . 27
A.1. Mapping Between ACTN & TMF & TAPI Modelling . . . . . . . 27
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 27
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 27
1. Introduction
[RFC8795] defines a YANG data model for technology generic, and it is
augmented by some other technology specific data models, e.g. OTN
topology data model in {{!draft-ietf-ccamp-otn-topo-yang}}.
[I-D.draft-ietf-teas-yang-te] defines a YANG data model for the
provisioning and management of Traffic Engineering (TE) tunnels,
Label Switched Paths (LSPs), and interfaces. Similarly, it could be
also augmented by some other technology specific data models to
implement a specific layer of TE tunnel.
Yu & Zhao Expires 5 September 2024 [Page 2]
Internet-Draft TE FGNM YANG March 2024
According to [I-D.draft-ietf-ccamp-transport-nbi-app-statement], it
is good to used the current TE data model system to manage an
abstracted network topology. In {{!draft-gstk-ccamp-actn-optical-
transport-mgmt}}, it is called Abstracted Control (AC) approach.
In [I-D.draft-gstk-ccamp-actn-optical-transport-mgmt], it also raised
another management approach, which is called Fine-Grain Network
Management (FGNM). FGNM is aimed to provide traditional FCAPS
capabilities.
[ITU-T_G.805] describes transport network from the viewpoint of the
information transfer capability, provides a generic functional
architecture which is also implementation independent. This
recommendation is the implementation basis of most of the vendors' or
operators' systems.
To provide traditional FCAPS functionalities, we need to align with
the modelling of traditional approach, which is suggested to be
[TMF-814]. Therefore, some more TMF attributes would be introduced.
To avoid introducing non-backward-compatible (NBC) changes, we would
like to provide some extension YANG data models, based on the current
model architecture.
Some extensions is generic for all network layers would be defined in
the FGNM extension models, including generic TE topology FGNM
extension and generic TE tunnel FGNM extension. The layer specific
FGNM extension should be found in some other YANG data models.
1.1. Terminology and Notations
Refer to [RFC7446] and [RFC7581] for the key terms used in this
document. The following terms are defined in [RFC7950] and are not
redefined here: * client * server * augment * data model * data node
The following terms are defined in [RFC6241] and are not redefined
here: * configuration data * state data
The following terms are defined in [RFC8454] and are not redefined
here: * CMI * MPI * MDSC * CNC * PNC
1.2. Tree Diagram
A simplified graphical representation of the data model is used in
Section 3 of this document. The meaning of the symbols in these
diagrams are defined in [RFC8340].
Yu & Zhao Expires 5 September 2024 [Page 3]
Internet-Draft TE FGNM YANG March 2024
1.3. Prefix in Data Node Names
In this document, names of data nodes and other data model objects
are prefixed using the standard prefix associated with the
corresponding YANG imported models, as showned in the following
table.
+===================+===========================+===========+
| Prefix | Yang model | Reference |
+===================+===========================+===========+
| nw | ietf-network | [RFC8345] |
+-------------------+---------------------------+-----------+
| nt | ietf-network-topology | [RFC8345] |
+-------------------+---------------------------+-----------+
| tet | ietf-te-topology | [RFC8795] |
+-------------------+---------------------------+-----------+
| yang | ietf-yang-types | [RFC6991] |
+-------------------+---------------------------+-----------+
| inet | ietf-inet-types | [RFC6991] |
+-------------------+---------------------------+-----------+
| te-types | ietf-te-types | [RFC8776] |
+-------------------+---------------------------+-----------+
| te | ietf-te | RFC YYYY |
+-------------------+---------------------------+-----------+
| tet-fgnm-ext | ietf-te-topology-fgnm-ext | RFC XXXX |
+-------------------+---------------------------+-----------+
| te-fgnm-ext | ietf-te-fgnm-ext | RFC XXXX |
+-------------------+---------------------------+-----------+
| te-types-fgnm-ext | ietf-te-types-fgnm-ext | RFC XXXX |
+-------------------+---------------------------+-----------+
Table 1: Prefixes and corresponding YANG models
RFC Editor Note: Please replace XXXX with the RFC number assigned to
this document. Please replace YYYY with the RFC number assigned to
the TE tunnel draft. Please remove this note.
2. Mapping of ACTN modelling Objects with TMF objects
{{ITU-T G.805}} describes the network as a transport network from the
viewpoint of the information transfer capability. More specifically,
the functional and structural architecture of transport networks are
described independently of networking technology. It also defines
various types of reference points, such as the Access Point (AP),
Connection Point (CP), and Trail Connection Point (TCP), and the
processing between reference points, which is called adaptation. A
transport entity that transmits information such as trails and
connections between reference points. For the details, we can refer
Yu & Zhao Expires 5 September 2024 [Page 4]
Internet-Draft TE FGNM YANG March 2024
to descriptions in chapter 3 of {{ITU-T G.805}} and Figure 1 to
Figure 3.
One disadvantage of {{ITU-T G.805}} is it is too complicated. So TMF
simplifies the modelling system of {{ITU-T G.805}}. The adaptation is
changed to be the capabilities of reference points. The reference
points is so that changed to some other terminologies, e.g. PTP and
FTP etc. This simplification still can be mapped to {{ITU-T G.805}}.
So that a lot of vendors and operators choose TMF modelling in their
system.
Based on the TMF modelling, CORBA/XML interface was defined to
provide FCAPS interfaces. These interfaces were widely used in the
operators’ network.
The transport ACTN is also initially designed to simplify network
configurations. To have a unified modelling with IP technology, many
new modelling terms of TE were introduced and build up a new
modelling system. Theoretically, these new modelling objects should
be a part of, or can be mapped to the reference points or adaptation
defined by {{ITU-T G.805}}. However, in the existing IETF documents,
there is not sufficient details can be found.
If the transport ACTN interface wants to support the complete FCAPS
capability, there could be two approaches. The first approach is the
ACTN interface build up a new alarm/performance monitoring mechanism,
based on its abstract control modelling. Just like what have been
done in {{!ITU-T G.874}} and {{!ITU-T G.875}}.
The second approach is reusing the traditional alarm/performance
monitoring mechanism, so that the ACTN modelling needs to be mapped
to the traditional modelling.
Currently, there is not sufficient theoretical support for the first
approach, and there is not such a attempt is tried in IETF. For the
second approach, one of the advantage is it can inherit the functions
integrated before. So that there would not be two much efforts need
to pay for the new integration.
In this document, we would like to follow the second approach. The
following table provides a mapping between the ACTN objects and TMF
objects.
Yu & Zhao Expires 5 September 2024 [Page 5]
Internet-Draft TE FGNM YANG March 2024
+========================+============================+
| ACTN Object | TMF Object |
+========================+============================+
| Network | NA |
+------------------------+----------------------------+
| Node | Management Element |
+------------------------+----------------------------+
| Link | Topology Link |
+------------------------+----------------------------+
| TP | PTP |
+------------------------+----------------------------+
| TTP | CTP/FTP |
+------------------------+----------------------------+
| Tunnel | SNC/XC |
+------------------------+----------------------------+
| NE | Management Element |
+------------------------+----------------------------+
| component | equipment holder/equipment |
+------------------------+----------------------------+
| Client signal | NA |
+------------------------+----------------------------+
| Ethernet Client signal | NA |
+------------------------+----------------------------+
| NA | Protection Group |
+------------------------+----------------------------+
| NA | Equipment Protection Group |
+------------------------+----------------------------+
Table 2: Mapping of ACTN objects with TMF objects
The ONF TAPI also defines a new set of terms, which are different
from the definitions of the {{ITU-T G.805}}. But it provides the
mapping of TAPI objects to ITU-T objects in Figure 3-2 of {{ONF_TR-
547}}. In the appendix of this document, we also compare the ACTN
object modelling and TAPI object modelling, which can be used as a
reference for a possible integration of these two interfaces in a
same MDSC.
3. Model Relationship
The current ACTN topology models for transport technology follows the
relationship as bellow:
Yu & Zhao Expires 5 September 2024 [Page 6]
Internet-Draft TE FGNM YANG March 2024
+----------------------+
| network topology |
+----------------------+
^
|augmenting
|
+----------------------+
| TE topology |
+----------------------+
^ ^ ^
| augmenting |
augmenting | | |
+--------------+ | |
| ETH topology | | |
+--------------+ | |
| |augmenting
+--------------+ |
| OTN topology | |
+--------------+ |
|
+--------------+
| WDM topology |
+--------------+
Figure 1: Relationship of ACTN topology
TE topology model was aimed to define common attributes for all the
technologies. OTN topology and WDM topology, etc., they are all
augmenting TE topology model to provide layer-specific extensions.
Although most of the objects in ACTN and TMF can be mapped to each
other, the parameters of the objects cannot be completely matched.
In other words, the current ACTN object needs to be extended with
some properties to support the full functionality of a traditional
object.
But in the traditional transport standards there is not such a saying
of TE-related modelling. If we want to extend the current IETF data
models to have full modelling of traditional approach, which is
called FGNM extension by us, we suggest to define the common
attributes for all the technologies in a TE topology FGNM extension
model.
For layer-specific FGNM extensions could reference existing way and
define in a separated layer-specific FGNM extension document. So in
the FGNM approach, the ACTN topology architecture will be extended to
be:
Yu & Zhao Expires 5 September 2024 [Page 7]
Internet-Draft TE FGNM YANG March 2024
+----------------------+
| network topology |
+----------------------+
^
|
|
+----------------------+ +----------------------+
| TE topology |<----------| TE FGNM Extension |
+----------------------+ +----------------------+
^ ^ ^ ^ ^ ^
| | | | | |
| | | | | |
+--------------+ | | +----------------+ | |
| ETH topology | | | | ETH FGNM EXT | | |
+--------------+ | | +----------------+ | |
| | | |
+--------------+ | +--------------+ |
| OTN topology | | | OTN FGNM EXT | |
+--------------+ | +--------------+ |
| |
+--------------+ +--------------+
| WDM topology | | WDM FGNM EXT |
+--------------+ +--------------+
Figure 2: Relationship of FGNM ACTN topology
It is also same for the TE tunnel architecture. The whole
architecture after FGNM tunnel extensions will be:
+----------------------+ +----------------------+
| TE Tunnel |<----------| TE FGNM Extension |
+----------------------+ +----------------------+
^ ^ ^ ^ ^ ^
| | | | | |
| | | | | |
+------------+ | | +----------------+ | |
| ETH Tunnel | | | | ETH FGNM EXT | | |
+------------+ | | +----------------+ | |
| | | |
+--------------+ | +--------------+ |
| OTN Tunnel | | | OTN FGNM EXT | |
+--------------+ | +--------------+ |
| |
+--------------+ +--------------+
| WDM Tunnel | | WDM FGNM EXT |
+--------------+ +--------------+
Figure 3: Relationship of FGNM ACTN tunnel
Yu & Zhao Expires 5 September 2024 [Page 8]
Internet-Draft TE FGNM YANG March 2024
4. FGNM Topology
For the some objects, although it is defined in IETF, but the way of
abstraction is not so implementation friendly, especially for TTP.
4.1. FGNM extension for TE topology
To be added
4.2. The Modelling and Usage of TTP
According to the description of {{!RFC8795}}, TTP is an element of a
TE topology representing one or several potential transport service
termination points, (i.e., service client adaptation points, such as
a WDM/OCh transponder).
In the ITU-T standard, such an adaptation point can be the
termination point of an end-to-end connection, or the source or sink
point of the intermediate cross-connection. A physical port can
generate a lot of logical objects. For example, a 100G line port can
function as 80 lower-order ODU0 adaptation points, 40 ODU1 adaptation
points, or even the adaptation point of an OCh tunnel. Considering
the data volume in large-scale network, it is not wise to expose all
these points. Because that most of them are potentially existing,
they are probably not used at the end.
In the document of TE topology, it is not indicated whether the TTPs
should be provided at day 0 or not. And it is also hard to find the
correlation with the physical port.
In this document, we suggest not to provide the potential TTPs but
the existing TTPs who have been used by connections at any time. If
the client want to retrieve these potential TTPs, a single RPC can
help to do so. This RPC should return the existing and potential
TTPs at the same time.
The key of TTP is tunnel-tp-id which is a binary type. For the
potential TTPs, it is no need to allocate a tunnel-tp-id for them.
But the server can provide a name for these TTPs, this name should
follow the pattern defined by TMF. When the client want to reference
a potential TTP, it can reference the name of this TTP, and then the
server will allocated a tunnel-tp-id for it after the connection
created. And this TTP is no more than a potential TTP but an
existing TTP, it should appear in the TTP list of topology.
Yu & Zhao Expires 5 September 2024 [Page 9]
Internet-Draft TE FGNM YANG March 2024
rpcs:
+---x query-ttp-by-tps
+--ro input
| +--ro tp-list* [tp-id]
| +--ro tp-id leafref
+--ro output
+--ro result? enumeration
+--ro result-list* [tp-id]
+--ro tp-id leafref
+--ro ttp-list*
+--ro tunnel-tp-id? leafref
+--ro ttp-name? string
+--ro using-status? enumeration
5. FGNM Extensions for TE Tunnel
5.1. Modelling of Point to Multi-Points and Multi-Points to Multi-
Points TE Tunnel
The current TE tunnel model only supports point-to-point scenario.
Therefore, only one source and sink structure is defined on the
tunnel node. In the transport technology, there are point-to-
multipoint scenarios and multipoint-to-multipoint connection
scenarios. For example, multicast service.
We suggest to extend the current TE tunnel model to support the
multi-point scenario. Considering the TTPs was not generate before
the tunnel created, the client can reference by the TTP by name.
5.2. Restoration
5.2.1. Lock of Restoration
In some maintenance scenarios, people may need to freeze the
restoration capability of a TE tunnel. For example, after obtaining
the customers' consent, the carrier can choose not to restore
services during the TE tunnel cutover. This prevents unstable
services flapping caused by repeated fiber cuts during the cutover.
The unstable services flapping would also affects existing services.
Section 3.2.8.11 in {{!ITU-T G.808}} mentions the freezing operation
of protection and rerouting switching. Therefore, compared with
traditional path management, the current TE tunnel model also needs
to add freezing capability to the protection and restoration
structure.
Yu & Zhao Expires 5 September 2024 [Page 10]
Internet-Draft TE FGNM YANG March 2024
5.2.2. Lock of Restoration Reversion
For some cutover scenario, services may be rerouted to a new trail
before the cutover operation. During the cutover, the fiber may be
frequently plug in and plug out due to commissioning. To make sure
that the new route will not go back to the original route and if the
tunnel is restoration reversion, there would be a requirement the
freeze the restoration reversion function. This is also a
functionality defined by ITU-T and it's missing in the current TE
tunnel.
5.2.3. Scheduling of Reversion Time
Maintenance job usually is taken place in a fixed time window, for
example at night when people are not using the network frequently as
daytime. So that there will not be impact as large as operating at
daytime if the maintenance job is failed. Operator can choose to
revert the services to the original path at night, so that the
restoration reversion would not have big impact on the network.
5.2.4. Priority of Restoration
In some operator, they configure different restoration priority to
different tunnels or services. When multiple services need to be
restored at a same time, high-priority services preferentially occupy
resources, and low-priority services can be rerouted only after the
rerouting of high-priority services is complete.
5.2.5. YANG for Restoration Extension
augment /te:te/te:tunnels/te:tunnel/te:restoration:
+--rw restoration-lock? boolean
+--rw restoration-reversion-lock? boolean
+--rw scheduled-reversion-time? yang:date-and-time
+--rw restoration-priority? enumeration
5.3. TTP Hop
The current TE tunnel data model can support to specify explicit
node/LTP included/excluded. However, for finer grain object, such as
TTP, it is not supported to specify.
Yu & Zhao Expires 5 September 2024 [Page 11]
Internet-Draft TE FGNM YANG March 2024
For example, in the scenario where lower-order and higher-order ODUk
tunnel are both existing, sometimes multiple lower-order ODUk tunnels
need to multiplex a higher-order ODUk tunnel. The client can specify
the higher-order ODUk tunnel's TTP to be included in the lower-order
ODUk tunnel's creation request. If the lower-order ODUk doesn't need
to multiplex a higher-order ODUk tunnel, the client can specify the
higher-order ODUk tunnel's TTP to be excluded in the lower-order ODUk
tunnel's creation request.
There can be two ways to specify this TTP. This higher-order ODUk
TTP can be existing in the topology if it has been occupied by a
higher-order ODUk tunnel. Then in the TTP hop, the client can
specify the ttp-id of this TTP. This TTP can also be nonexisting in
the topology or idle for tunnel creation. And then then client can
specify the name of TTP in the creation request.
Yu & Zhao Expires 5 September 2024 [Page 12]
Internet-Draft TE FGNM YANG March 2024
augment /te:te/te:tunnels/te:tunnel/te:primary-paths/te:primary-path
/te:explicit-route-objects-always
/te:route-object-include-exclude/te:type:
+--:(ttp-hop)
+--rw ttp-hop
+--rw node-id? nw:node-id
+--rw (id-or-name)?
+--:(id)
| +--rw ttp-id? binary
+--:(name)
+--rw ttp-name? string
augment /te:te/te:tunnels/te:tunnel/te:secondary-paths
/te:secondary-path/te:explicit-route-objects-always
/te:route-object-include-exclude/te:type:
+--:(ttp-hop)
+--rw ttp-hop
+--rw node-id? nw:node-id
+--rw (id-or-name)?
+--:(id)
| +--rw ttp-id? binary
+--:(name)
+--rw ttp-name? string
augment /te:te/te:tunnels/te:tunnel/te:primary-paths/te:primary-path
/te:primary-reverse-path/te:explicit-route-objects-always
/te:route-object-include-exclude/te:type:
+--:(ttp-hop)
+--rw ttp-hop
+--rw node-id? nw:node-id
+--rw (id-or-name)?
+--:(id)
| +--rw ttp-id? binary
+--:(name)
+--rw ttp-name? string
augment /te:te/te:tunnels/te:tunnel/te:secondary-reverse-paths
/te:secondary-reverse-path/te:explicit-route-objects-always
/te:route-object-include-exclude/te:type:
+--:(ttp-hop)
+--rw ttp-hop
+--rw node-id? nw:node-id
+--rw (id-or-name)?
+--:(id)
| +--rw ttp-id? binary
+--:(name)
+--rw ttp-name? string
Yu & Zhao Expires 5 September 2024 [Page 13]
Internet-Draft TE FGNM YANG March 2024
6. Tree Diagram
6.1. FGNM Extension for TE Topology
Figure 4 below shows the tree diagram of the YANG data model defined
in model ietf-te-topology-fgnm-ext.yang(Section 7.1).
module: ietf-te-topology-fgnm-ext
augment /nw:networks/nw:network/nw:node/tet:te:
+--rw (layer-specific-extension)?
+--:(generic)
augment /nw:networks/nw:network/nw:node/nt:termination-point/tet:te:
+--rw (layer-specific-extension)?
+--:(generic)
augment /nw:networks/nw:network/nw:node/tet:te/tet:tunnel-termination-point:
+--rw (layer-specific-extension)?
+--:(generic)
augment /nw:networks/nw:network/nt:link/tet:te:
+--rw (layer-specific-extension)?
+--:(generic)
rpcs:
+---x query-ttp-by-tps
+--ro input
| +--ro tp-list* [tp-id]
| +--ro tp-id leafref
+--ro output
+--ro result? enumeration
+--ro result-list* [tp-id]
+--ro tp-id leafref
+--ro ttp-list*
+--ro tunnel-tp-id? leafref
+--ro ttp-name? string
+--ro using-status? enumeration
Figure 4: FGNM extension for TE topology tree diagram
6.2. FGNM Extension for TE Tunnel
Figure 5 below shows the tree diagram of the YANG data model defined
in module ietf-te-fgnm-ext.yang(Section 7.2).
module: ietf-te-fgnm-ext
augment /te:te/te:tunnels/te:tunnel:
+--rw alias? string
+--ro create-time? yang:date-and-time
+--ro active-time? yang:date-and-time
+--rw source-endpoints
| +--rw source-endpoint*
Yu & Zhao Expires 5 September 2024 [Page 14]
Internet-Draft TE FGNM YANG March 2024
| +--rw node-id? leafref
| +--rw (endpoint-tp)?
| | +--:(ltp)
| | | +--rw tp-id? leafref
| | +--:(ttp)
| | +--rw (id-or-name)?
| | +--:(id)
| | | +--rw ttp-id? leafref
| | +--:(name)
| | +--rw ttp-name? leafref
| +--rw protection-role? enumeration
+--rw destination-endpoints
+--rw destination-endpoint*
+--rw node-id? leafref
+--rw (endpoint-tp)?
| +--:(ltp)
| | +--rw tp-id? leafref
| +--:(ttp)
| +--rw (id-or-name)?
| +--:(id)
| | +--rw ttp-id? leafref
| +--:(name)
| +--rw ttp-name? leafref
+--rw protection-role? enumeration
augment /te:te/te:tunnels/te:tunnel/te:restoration:
+--rw restoration-lock? boolean
+--rw restoration-reversion-lock? boolean
+--rw scheduled-reversion-time? yang:date-and-time
+--rw restoration-priority? enumeration
+--rw restoration-layer? enumeration
augment /te:te/te:tunnels/te:tunnel/te:primary-paths/te:primary-path/te:explicit-route-objects-always/te:route-object-include-exclude/te:type:
+--:(ttp-hop)
+--rw ttp-hop
+--rw node-id? nw:node-id
+--rw (id-or-name)?
+--:(id)
| +--rw ttp-id? binary
+--:(name)
+--rw ttp-name? string
augment /te:te/te:tunnels/te:tunnel/te:secondary-paths/te:secondary-path/te:explicit-route-objects-always/te:route-object-include-exclude/te:type:
+--:(ttp-hop)
+--rw ttp-hop
+--rw node-id? nw:node-id
+--rw (id-or-name)?
+--:(id)
| +--rw ttp-id? binary
+--:(name)
+--rw ttp-name? string
Yu & Zhao Expires 5 September 2024 [Page 15]
Internet-Draft TE FGNM YANG March 2024
augment /te:te/te:tunnels/te:tunnel/te:primary-paths/te:primary-path/te:primary-reverse-path/te:explicit-route-objects-always/te:route-object-include-exclude/te:type:
+--:(ttp-hop)
+--rw ttp-hop
+--rw node-id? nw:node-id
+--rw (id-or-name)?
+--:(id)
| +--rw ttp-id? binary
+--:(name)
+--rw ttp-name? string
augment /te:te/te:tunnels/te:tunnel/te:secondary-reverse-paths/te:secondary-reverse-path/te:explicit-route-objects-always/te:route-object-include-exclude/te:type:
+--:(ttp-hop)
+--rw ttp-hop
+--rw node-id? nw:node-id
+--rw (id-or-name)?
+--:(id)
| +--rw ttp-id? binary
+--:(name)
+--rw ttp-name? string
Figure 5: FGNM extension for TE tunnel tree diagram
7. YANG Data Model
7.1. FGNM Extensin for TE Topology
<CODE BEGINS> file "ietf-te-topology-fgnm-ext@2024-03-04.yang"
module ietf-te-topology-fgnm-ext {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-te-topology-fgnm-ext";
prefix tet-fgnm-ext;
import ietf-network {
prefix "nw";
}
import ietf-network-topology {
prefix "nt";
}
import ietf-te-topology {
prefix "tet";
}
organization
"IETF CCAMP Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/ccamp/>
WG List: <mailto:ccamp@ietf.org>
Yu & Zhao Expires 5 September 2024 [Page 16]
Internet-Draft TE FGNM YANG March 2024
Editor: Chaode Yu
<mailto:yuchaode@huawei.com>
Xing Zhao
<mailto:zhaoxing@caict.ac.cn>";
description
"This module provide some extensions to TE topology model, based
on transport fine-grain network management requirement";
revision 2024-03-04 {
description
"Revision 1.0";
reference
"draft-yu-ccamp-te-fgnm-yang-00";
}
augment "/nw:networks/nw:network/nw:node/tet:te" {
description
"Generic fine-grain network management extensions for
te node";
uses node-fgnm-ext-grouping;
}
augment "/nw:networks/nw:network/nw:node/nt:termination-point/"
+ "tet:te" {
description
"Generic fine-grain network management extensions for
termination point";
uses tp-fgnm-ext-grouping;
}
augment "/nw:networks/nw:network/nw:node/tet:te" +
"/tet:tunnel-termination-point" {
description
"Generic fine-grain network management extensions for
te node";
uses ttp-fgnm-ext-grouping;
}
augment "/nw:networks/nw:network/nt:link/tet:te" {
description
"Generic fine-grain network management extensions for link";
uses link-fgnm-ext-grouping;
}
Yu & Zhao Expires 5 September 2024 [Page 17]
Internet-Draft TE FGNM YANG March 2024
grouping node-fgnm-ext-grouping {
choice layer-specific-extension {
case generic {
}
}
}
grouping tp-fgnm-ext-grouping {
choice layer-specific-extension {
case generic {
}
}
}
grouping ttp-fgnm-ext-grouping {
choice layer-specific-extension {
case generic {
}
}
}
grouping link-fgnm-ext-grouping {
choice layer-specific-extension {
case generic {
}
}
}
rpc query-ttp-by-tps {
input {
list tp-list {
key tp-id;
leaf tp-id {
type leafref {
path "/nw:networks/nw:network/nw:node" +
"/nt:termination-point/nt:tp-id";
}
description "the identifier of TP to querey";
}
}
}
output {
leaf result {
Yu & Zhao Expires 5 September 2024 [Page 18]
Internet-Draft TE FGNM YANG March 2024
type enumeration {
enum failed;
enum partially-successful;
enum successful;
}
description "the result of retrieval";
}
list result-list {
key tp-id;
leaf tp-id {
type leafref {
path "/nw:networks/nw:network/nw:node" +
"/nt:termination-point/nt:tp-id";
}
description "the identifier of TP queried and returns TTPs";
}
list ttp-list {
leaf tunnel-tp-id {
type leafref {
path "/nw:networks/nw:network/nw:node/tet:te" +
"/tet:tunnel-termination-point/tet:tunnel-tp-id";
}
description "Identifier of TTP which is existing in the
topology. It is not required to return if it is not
existing in the topology.";
}
leaf ttp-name {
type string;
description "Name of TTP. If the ttp is idle, the default
name should be provided by the server and follow the
naming pattern of TMF814.";
}
leaf using-status {
type enumeration {
enum idle;
enum bidirectional-used;
}
}
}
}
}
Yu & Zhao Expires 5 September 2024 [Page 19]
Internet-Draft TE FGNM YANG March 2024
}
}
<CODE ENDS>
Figure 6: FGNM Extensin for TE Topology YANG module
7.2. FGNM Extensin for TE Tunnel
<CODE BEGINS> file "ietf-te-fgnm-ext@2024-03-04.yang"
module ietf-te-fgnm-ext {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-te-fgnm-ext";
prefix te-fgnm-ext;
import ietf-te {
prefix "te";
}
import ietf-yang-types {
prefix "yang";
}
import ietf-te-types-fgnm-ext {
prefix "te-types-fgnm-ext";
}
import ietf-network {
prefix "nw";
}
import ietf-network-topology {
prefix "nt";
}
import ietf-te-topology {
prefix "tet";
}
organization
"IETF CCAMP Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/ccamp/>
WG List: <mailto:ccamp@ietf.org>
Editor: Chaode Yu
<mailto:yuchaode@huawei.com>
Xing Zhao
<mailto:zhaoxing@caict.ac.cn>";
Yu & Zhao Expires 5 September 2024 [Page 20]
Internet-Draft TE FGNM YANG March 2024
description
"This module provide some extensions to TE topology model, based
on transport fine-grain network management requirement";
revision 2024-03-04 {
description
"Revision 1.0";
reference
"draft-yu-ccamp-te-fgnm-yang-00";
}
augment "/te:te/te:tunnels/te:tunnel" {
leaf alias {
description
"alias of TE tunnel";
type string;
}
uses time-state-grouping;
container source-endpoints {
list source-endpoint {
uses endpoint-grouping;
}
}
container destination-endpoints {
list destination-endpoint {
uses endpoint-grouping;
}
}
}
augment "/te:te/te:tunnels/te:tunnel/te:restoration" {
leaf restoration-lock {
description
"a lock to control whether the restoration can take effect or
not, it is useful in the maintenance scenrios, such as in
cutover";
type boolean;
}
leaf restoration-reversion-lock {
description
"a lock to control whether the reversion of restoration can
take effect or not.";
type boolean;
}
Yu & Zhao Expires 5 September 2024 [Page 21]
Internet-Draft TE FGNM YANG March 2024
leaf scheduled-reversion-time {
description
"a time when the reversion of restoration can take effect.";
type yang:date-and-time;
}
leaf restoration-priority {
description
"when there are multiple services need to be restored, the
higher estoration priority services can occupied the idle
resource in priority, it is used to control the restoration
sequence.";
type enumeration {
enum high;
enum medium;
enum low;
}
}
leaf restoration-layer {
description
"the layer of topolgy prefered to be operated when restoration
is needed.";
type enumeration {
enum odu;
enum wdm;
}
}
}
augment "/te:te/te:tunnels/te:tunnel/te:primary-paths"
+ "/te:primary-path/te:explicit-route-objects-always"
+ "/te:route-object-include-exclude/te:type" {
description
"a TTP hop";
case ttp-hop {
uses te-types-fgnm-ext:explicit-ttp-hop;
}
}
augment "/te:te/te:tunnels/te:tunnel/te:secondary-paths"
+ "/te:secondary-path/te:explicit-route-objects-always"
+ "/te:route-object-include-exclude/te:type" {
description
"a TTP hop";
case ttp-hop {
uses te-types-fgnm-ext:explicit-ttp-hop;
}
Yu & Zhao Expires 5 September 2024 [Page 22]
Internet-Draft TE FGNM YANG March 2024
}
augment "/te:te/te:tunnels/te:tunnel/te:primary-paths"
+ "/te:primary-path/te:primary-reverse-path"
+ "/te:explicit-route-objects-always"
+ "/te:route-object-include-exclude/te:type" {
description
"a TTP hop";
case ttp-hop {
uses te-types-fgnm-ext:explicit-ttp-hop;
}
}
augment "/te:te/te:tunnels/te:tunnel/te:secondary-reverse-paths"
+ "/te:secondary-reverse-path"
+ "/te:explicit-route-objects-always"
+ "/te:route-object-include-exclude/te:type" {
description
"a TTP hop";
case ttp-hop {
uses te-types-fgnm-ext:explicit-ttp-hop;
}
}
grouping time-state-grouping {
leaf create-time {
config false;
description
"the time when the tunnel was created";
type yang:date-and-time;
}
leaf active-time {
config false;
description
"the lastest time when the tunnel was activated";
type yang:date-and-time;
}
}
grouping endpoint-grouping {
leaf node-id {
type leafref {
path "/nw:networks/nw:network/nw:node/nw:node-id";
}
}
choice endpoint-tp {
Yu & Zhao Expires 5 September 2024 [Page 23]
Internet-Draft TE FGNM YANG March 2024
case ltp {
leaf tp-id {
type leafref {
path "/nw:networks/nw:network/nw:node/nt:termination-point"
+ "/nt:tp-id";
}
}
}
case ttp {
choice id-or-name {
case id {
leaf ttp-id {
type leafref {
path "/nw:networks/nw:network/nw:node/tet:te"
+ "/tet:tunnel-termination-point/tet:tunnel-tp-id";
}
}
}
case name {
leaf ttp-name {
type leafref {
path "/nw:networks/nw:network/nw:node/tet:te"
+ "/tet:tunnel-termination-point/tet:name";
}
}
}
}
}
}
leaf protection-role {
description
"role of this endpoint in multipoints scenario";
type enumeration {
enum work;
enum protect;
}
}
}
}
<CODE ENDS>
Figure 7: FGNM Extensin for TE tunnel YANG module
Yu & Zhao Expires 5 September 2024 [Page 24]
Internet-Draft TE FGNM YANG March 2024
8. Manageability Considerations
<Add any manageability considerations>
9. Security Considerations
<Add any security considerations>
10. IANA Considerations
<Add any IANA considerations>
11. Normative References
[I-D.draft-gstk-ccamp-actn-optical-transport-mgmt]
Farrel, A., King, D., and X. Zhao, "Integrating YANG
Configuration and Management into an Abstraction and
Control of TE Networks (ACTN) System for Optical
Networks", Work in Progress, Internet-Draft, draft-gstk-
ccamp-actn-optical-transport-mgmt, October 2023,
<https://datatracker.ietf.org/doc/html/draft-gstk-ccamp-
actn-optical-transport-mgmt-01>.
[I-D.draft-ietf-ccamp-transport-nbi-app-statement]
Busi, I., King, D., Zheng, H., and Y. Xu, "Transport
Northbound Interface Applicability Statement", Work in
Progress, Internet-Draft, draft-ietf-ccamp-transport-nbi-
app-statement, July 2023,
<https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-
transport-nbi-app-statement-17>.
[I-D.draft-ietf-teas-yang-te]
Saad, T., Gandhi, R., Liu, X., Beeram, V., and I. Bryskin,
"A YANG Data Model for Traffic Engineering Tunnels, Label
Switched Paths and Interfaces", Work in Progress,
Internet-Draft, draft-ietf-teas-yang-te, February 2024,
<https://datatracker.ietf.org/doc/html/draft-ietf-teas-
yang-te-36>.
[ITU-T_G.805]
International Telecommunication Union, "Generic functional
architecture of transport networks", ITU-T Recommendation
G.805 , March 2000.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
Yu & Zhao Expires 5 September 2024 [Page 25]
Internet-Draft TE FGNM YANG March 2024
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
RFC 6991, DOI 10.17487/RFC6991, July 2013,
<https://www.rfc-editor.org/info/rfc6991>.
[RFC7446] Lee, Y., Ed., Bernstein, G., Ed., Li, D., and W. Imajuku,
"Routing and Wavelength Assignment Information Model for
Wavelength Switched Optical Networks", RFC 7446,
DOI 10.17487/RFC7446, February 2015,
<https://www.rfc-editor.org/info/rfc7446>.
[RFC7581] Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and
J. Han, "Routing and Wavelength Assignment Information
Encoding for Wavelength Switched Optical Networks",
RFC 7581, DOI 10.17487/RFC7581, June 2015,
<https://www.rfc-editor.org/info/rfc7581>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/info/rfc8340>.
[RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N.,
Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
Network Topologies", RFC 8345, March 2018,
<https://www.rfc-editor.org/info/rfc8345>.
[RFC8454] Lee, Y., Belotti, S., Dhody, D., Ceccarelli, D., and B.
Yoon, "Information Model for Abstraction and Control of TE
Networks (ACTN)", RFC 8454, DOI 10.17487/RFC8454,
September 2018, <https://www.rfc-editor.org/info/rfc8454>.
[RFC8776] Saad, T., Gandhi, R., Dhody, D., Beeram, V., and I.
Bryskin, "Common YANG Data Types for Traffic Engineering",
RFC 8776, June 2020,
<https://www.rfc-editor.org/info/rfc8776>.
[RFC8795] Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
O. Gonzalez de Dios, "YANG Data Model for Traffic
Engineering (TE) Topologies", RFC 8795,
DOI 10.17487/RFC8795, August 2020,
<https://www.rfc-editor.org/info/rfc8795>.
[TMF-814] TM Forum (TMF), "MTNM Solution Set (IDL) R4.5", TMF814 ,
2014, <https://www.tmforum.org/resources/interface/tmf814-
mtnm-solution-set-idl-version-r4-5/>.
Yu & Zhao Expires 5 September 2024 [Page 26]
Internet-Draft TE FGNM YANG March 2024
Appendix A. Appendix
A.1. Mapping Between ACTN & TMF & TAPI Modelling
+===============+============================+======================+
| ACTN Object | TMF Object | TAPI Object |
+===============+============================+======================+
| Network | NA | Topology |
+---------------+----------------------------+----------------------+
| Node | Management Element | Node |
+---------------+----------------------------+----------------------+
| Link | Topology Link | Link |
+---------------+----------------------------+----------------------+
| TP | PTP | SIP/NEP |
+---------------+----------------------------+----------------------+
| TTP | CTP/FTP | CEP |
+---------------+----------------------------+----------------------+
| Tunnel | SNC/XC | Connection |
+---------------+----------------------------+----------------------+
| NE | Management Element | Device |
+---------------+----------------------------+----------------------+
| Component | Equipment Holder/Equipment | Equipment/Holder |
+---------------+----------------------------+----------------------+
| Client signal | NA | Connectivity |
| | | service |
+---------------+----------------------------+----------------------+
| Ethernet | NA | Connectivity |
| Client signal | | service |
+---------------+----------------------------+----------------------+
| NA | Protection Group | NA |
+---------------+----------------------------+----------------------+
| NA | Equipment Protection Group | NA |
+---------------+----------------------------+----------------------+
Table 3: Mapping of ACTN objects with TMF objects
Acknowledgments
Authors' Addresses
Chaode Yu
Huawei Technologies
Email: yuchaode@huawei.com
Xing Zhao
CAICT
Email: zhaoxing@caict.ac.cn
Yu & Zhao Expires 5 September 2024 [Page 27]