rfc4882
Network Working Group R. Koodli
Request for Comments: 4882 Nokia Siemens Networks
Category: Informational May 2007
IP Address Location Privacy and Mobile IPv6: Problem Statement
Status of This Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The IETF Trust (2007).
Abstract
In this document, we discuss location privacy as applicable to Mobile
IPv6. We document the concerns arising from revealing a Home Address
to an onlooker and from disclosing a Care-of Address to a
correspondent.
Table of Contents
1. Introduction ....................................................2
2. Definitions .....................................................3
3. Problem Definition ..............................................4
3.1. Disclosing the Care-of Address to the Correspondent Node ...4
3.2. Revealing the Home Address to Onlookers ....................4
3.3. Problem Scope ..............................................4
4. Problem Illustration ............................................5
5. Conclusion ......................................................7
6. Security Considerations .........................................7
7. Acknowledgments .................................................8
8. References ......................................................8
8.1. Normative References .......................................8
8.2. Informative References .....................................8
Appendix A. Background ............................................10
Koodli Informational [Page 1]
RFC 4882 MIP6 Location Privacy May 2007
1. Introduction
The problems of location privacy, and privacy when using IP for
communication, have become important. IP privacy is broadly
concerned with protecting user communication from unwittingly
revealing information that could be used to analyze and gather
sensitive user data. Examples include gathering data at certain
vantage points, collecting information related to specific traffic,
and monitoring (perhaps) certain populations of users for activity
during specific times of the day, etc. In this document, we refer to
this as the "profiling" problem.
Location privacy is concerned with the problem of revealing roaming,
which we define here as the process of a Mobile Node (MN) moving from
one network to another with or without ongoing sessions. A constant
identifier with global scope can reveal roaming. Examples are a
device identifier such as an IP address, and a user identifier such
as a SIP [RFC3261] URI [RFC3986]. Often, a binding between these two
identifiers is available, e.g., through DNS [RFC1035]. Traffic
analysis of such IP and Upper Layer Protocol identifiers on a single
network can indicate device and user roaming. Roaming could also be
inferred by means of profiling constant fields in IP communication
across multiple network movements. For example, an Interface
Identifier (IID) [RFC2462] in the IPv6 address that remains unchanged
across networks could suggest roaming. The Security Parameter Index
(SPI) in the IPsec [RFC4301] header is another field that may be
subject to such profiling and inference. Inferring roaming in this
way typically requires traffic analysis across multiple networks, or
colluding attackers, or both. When location privacy is compromised,
it could lead to more targeted profiling of user communication.
As can be seen, the location privacy problem spans multiple protocol
layers. Nevertheless, we can examine problems encountered by nodes
using a particular protocol layer. Roaming is particularly important
to Mobile IP, which defines a global identifier (Home Address) that
can reveal device roaming, and in conjunction with a corresponding
user identifier (such as a SIP URI), can also reveal user roaming.
Furthermore, a user may not wish to reveal roaming to
correspondent(s), which translates to the use of a Care-of Address.
As with a Home Address, the Care-of Address can also reveal the
topological location of the Mobile Node.
This document scopes the problem of location privacy for the Mobile
IP protocol. The primary goal is to prevent attackers on the path
between the Mobile Node (MN) and the Correspondent Node (CN) from
detecting roaming due to the disclosure of the Home Address. The
attackers are assumed to be able to observe, modify, and inject
traffic at one point between the MN and the CN. The attackers are
Koodli Informational [Page 2]
RFC 4882 MIP6 Location Privacy May 2007
assumed not to be able to observe at multiple points and correlate
observations to detect roaming. For this reason, MAC addresses,
IIDs, and other fields that can be profiled to detect roaming are
only in scope to the extent that they can be used by an attacker at
one point. Upper layer protocol identifiers that expose roaming are
out of scope except that a solution to the problem described here
needs to be usable as a building block in solutions to those
problems.
This document also considers the problem from the exposure of a
Care-of Address to the CN.
This document is only concerned with IP address location privacy in
the context of Mobile IPv6. It does not address the overall privacy
problem. For instance, it does not address privacy issues related to
MAC addresses or the relationship of IP and MAC addresses [HADDAD],
or the Upper Layer Protocol addresses. Solutions to the problem
specified here should provide protection against roaming disclosure
due to using Mobile IPv6 addresses from a visited network.
This document assumes that the reader is familiar with the basic
operation of Mobile IPv6 [RFC3775] and the associated terminology
defined therein. For convenience, we provide some definitions below.
2. Definitions
o Mobile Node (MN): A Mobile IPv6 Mobile Node that freely roams
around networks
o Correspondent Node (CN): A Mobile IPv6 that node corresponds with
an MN
o Home Network: The network where the MN is normally present when it
is not roaming
o Visited Network: A network that an MN uses to access the Internet
when it is roaming
o Home Agent: A router on the MN's home network that provides
forwarding support when the MN is roaming
o Home Address (HoA): The MN's unicast IP address valid on its home
network
o Care-of Address (CoA): The MN's unicast IP address valid on the
visited network
Koodli Informational [Page 3]
RFC 4882 MIP6 Location Privacy May 2007
o Reverse Tunneling or Bidirectional Tunneling: A mechanism used for
packet forwarding between the MN and its Home Agent
o Route Optimization: A mechanism that allows direct routing of
packets between a roaming MN and its CN, without having to
traverse the home network
3. Problem Definition
3.1. Disclosing the Care-of Address to the Correspondent Node
When a Mobile IP MN roams from its home network to a visited network
or from one visited network to another, use of Care-of Address in
communication with a correspondent reveals that the MN has roamed.
This assumes that the correspondent is able to associate the Care-of
Address to the Home Address, for instance, by inspecting the Binding
Cache Entry. The Home Address itself is assumed to have been
obtained by whatever means (e.g., through DNS lookup).
3.2. Revealing the Home Address to Onlookers
When a Mobile IP MN roams from its home network to a visited network
or from one visited network to another, use of a Home Address in
communication reveals to an onlooker that the MN has roamed. When a
binding of a Home Address to a user identifier (such as a SIP URI) is
available, the Home Address can be used to also determine that the
user has roamed. This problem is independent of whether the MN uses
a Care-of Address to communicate directly with the correspondent
(i.e., uses route optimization), or the MN communicates via the Home
Agent (i.e., uses reverse tunneling). Location privacy can be
compromised when an onlooker is present on the MN - CN path (when
route optimization is used). It may also be compromised when the
onlooker is present on the MN - HA path (when bidirectional tunneling
without encryption is used; see below).
3.3. Problem Scope
With existing Mobile IPv6 solutions, there is some protection against
location privacy. If a Mobile Node uses reverse tunneling with
Encapsulating Security Payload (ESP) encryption, then the Home
Address is not revealed on the MN - HA path. So, eavesdroppers on
the MN - HA path cannot determine roaming. They could, however,
still profile fields in the ESP header; however, this problem is not
specific to Mobile IPv6 location privacy.
When an MN uses reverse tunneling (regardless of ESP encryption), the
correspondent does not have access to the Care-of Address. Hence, it
cannot determine that the MN has roamed.
Koodli Informational [Page 4]
RFC 4882 MIP6 Location Privacy May 2007
Hence, the location privacy problem is particularly applicable when
Mobile IPv6 route optimization is used or when reverse tunneling is
used without protecting the inner IP packet containing the Home
Address.
4. Problem Illustration
This section is intended to provide an illustration of the problem
defined in the previous section.
Consider a Mobile Node at its home network. Whenever it is involved
in IP communication, its correspondents can see an IP address valid
on the home network. Elaborating further, the users involved in
peer-to-peer communication are likely to see a user-friendly
identifier such as a SIP URI, and the communication endpoints in the
IP stack will see IP addresses. Users uninterested in or unaware of
IP communication details will not see any difference when the MN
acquires a new IP address. Of course, any user can "tcpdump" or
"ethereal" a session, capture IP packets, and map the MN's IP address
to an approximate geo-location. This mapping may reveal the home
location of a user, but a correspondent cannot ascertain whether the
user has actually roamed or not. Assessing the physical location
based on IP addresses has some similarities to assessing the
geographical location based on the area code of a telephone number.
The granularity of the physical area corresponding to an IP address
can vary depending on how sophisticated the available tools are, how
often an ISP conducts its network re-numbering, etc. Also, an IP
address cannot guarantee that a peer is at a certain geographic area
due to technologies such as VPN and tunneling.
When the MN roams to another network, the location privacy problem
consists of two parts: revealing information to its correspondents
and to onlookers.
With its correspondents, the MN can either communicate directly or
reverse-tunnel its packets through the Home Agent. Using reverse
tunneling does not reveal the Care-of Address of the MN, although
end-to-end delay may vary depending on the particular scenario. With
those correspondents with which it can disclose its Care-of Address
"on the wire", the MN has the option of using route-optimized
communication. The transport protocol still sees the Home Address
with route optimization. Unless the correspondent runs some packet
capturing utility, the user cannot see which mode (reverse tunneling
or route optimization) is being used, but knows that it is
communicating with the same peer whose URI it knows. This is similar
to conversing with a roaming cellphone user whose phone number, like
the URI, remains unchanged.
Koodli Informational [Page 5]
RFC 4882 MIP6 Location Privacy May 2007
Regardless of whether the MN uses route optimization or reverse
tunneling (without ESP encryption), its Home Address is revealed in
data packets. When equipped with an ability to inspect packets "on
the wire", an onlooker on the MN - HA path can determine that the MN
has roamed and could possibly also determine that the user has
roamed. This could compromise the location privacy even if the MN
took steps to hide its roaming information from a correspondent.
The above description is valid regardless of whether a Home Address
is statically allocated or is dynamically allocated. In either case,
the mapping of IP address to a geo-location will most likely yield
results with the same level of granularity. With the freely
available tools on the Internet, this granularity is the physical
address of the ISP or the organization that registers ownership of a
prefix chunk. Since an ISP or an organization is not, rightly,
required to provide a blueprint of its subnets, the granularity
remains fairly coarse for a mobile wireless network. However,
sophisticated attackers might be able to conduct site mapping and
obtain more fine-grained subnet information.
A compromise in location privacy could lead to more targeted
profiling of user data. An eavesdropper may specifically track the
traffic containing the Home Address, and monitor the movement of the
Mobile Node with a changing Care-of Address. The profiling problem
is not specific to Mobile IPv6, but could be triggered by a
compromise in location privacy due to revealing the Home Address. A
correspondent may take advantage of the knowledge that a user has
roamed when the Care-of Address is revealed, and modulate actions
based on such knowledge. Such information could cause concern to a
mobile user, especially when the correspondent turns out be
untrustworthy. For these reasons, appropriate security measures on
the management interfaces on the MN to guard against the disclosure
or misuse of location information should be considered.
Applying existing techniques to thwart profiling may have
implications to Mobile IPv6 signaling performance. For instance,
changing the Care-of Address often would cause additional Return
Routability [RFC3775] and binding management signaling. And,
changing the Home Address often has implications on IPsec security
association management. Careful consideration should be given to the
signaling cost introduced by changing either the Care-of Address or
the Home Address.
When roaming, an MN may treat its home network nodes as any other
correspondents. Reverse tunneling is perhaps sufficient for home
network communication, since route-optimized communication will
traverse the identical path. Hence, an MN can avoid revealing its
Care-of Address to its home network correspondents simply by using
Koodli Informational [Page 6]
RFC 4882 MIP6 Location Privacy May 2007
reverse tunneling. The Proxy Neighbor Advertisements [RFC2461] from
the Home Agent could serve as hints to the home network nodes that
the Mobile Node is away. However, they will not be able to know the
Mobile Node's current point of attachment unless the MN uses route
optimization with them.
5. Conclusion
In this document, we have discussed the location privacy problem as
applicable to Mobile IPv6. The problem can be summarized as follows:
disclosing the Care-of Address to a correspondent and revealing the
Home Address to an onlooker can compromise the location privacy of a
Mobile Node, and hence that of a user. We have seen that
bidirectional tunneling allows an MN to protect its Care-of Address
to the CN. And, ESP encryption of an inner IP packet allows the MN
to protect its Home Address from the onlookers on the MN - HA path.
However, with route optimization, the MN will reveal its Care-of
Address to the CN. Moreover, route optimization causes the Home
Address to be revealed to onlookers in the data packets as well as in
Mobile IPv6 signaling messages. The solutions to this problem are
expected to be protocol specifications that use the existing Mobile
IPv6 functional entities, namely, the Mobile Node, its Home Agent,
and the Correspondent Node.
6. Security Considerations
This document discusses the location privacy problem specific to
Mobile IPv6. Any solution must be able to protect (e.g., using
encryption) the Home Address from disclosure to onlookers in data
packets when using route optimization or reverse tunneling. In
addition, solutions must consider protecting the Mobile IPv6
signaling messages from disclosing the Home Address along the MN - HA
and MN - CN paths.
Disclosing the Care-of Address is inevitable if an MN wishes to use
route optimization. Regardless of whether the Care-of Address is an
on-link address of the MN on the visited link or that of a
cooperating proxy, mere presence of a Binding Cache Entry is
sufficient for a CN to ascertain roaming. Hence, an MN concerned
with location privacy should exercise prudence in determining whether
to use route optimization with, especially previously unacquainted,
correspondents.
The solutions should also consider the use of temporary addresses and
their implications on Mobile IPv6 signaling as discussed in Section
4, "Problem Illustration". Use of IP addresses with privacy
extensions [RFC3041] could be especially useful for Care-of Addresses
Koodli Informational [Page 7]
RFC 4882 MIP6 Location Privacy May 2007
if appropriate trade-offs with Return Routability signaling are taken
into account.
7. Acknowledgments
James Kempf, Qiu Ying, Sam Xia, and Lakshminath Dondeti are
acknowledged for their review and feedback. Thanks to Jari Arkko and
Kilian Weniger for the last-call review and for suggesting
improvements and text. Thanks to Sam Hartman for providing text to
improve the problem scope.
8. References
8.1. Normative References
[RFC3775] Johnson, D., Perkins, C., and J. Arkko, "Mobility Support
in IPv6", RFC 3775, June 2004.
8.2. Informative References
[HADDAD] Haddad, W., et al., "Privacy for Mobile and Multi-homed
Nodes: Problem Statement" Work in Progress, June 2006.
[RFC1035] Mockapetris, P., "Domain names - implementation and
specification", STD 13, RFC 1035, November 1987.
[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66, RFC
3986, January 2005.
[RFC2461] Narten, T., Nordmark, E., and W. Simpson, "Neighbor
Discovery for IP Version 6 (IPv6)", RFC 2461, December
1998.
[RFC2462] Thomson, S. and T. Narten, "IPv6 Stateless Address
Autoconfiguration", RFC 2462, December 1998.
[RFC3041] Narten, T. and R. Draves, "Privacy Extensions for
Stateless Address Autoconfiguration in IPv6", RFC 3041,
January 2001.
[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
A., Peterson, J., Sparks, R., Handley, M., and E.
Schooler, "SIP: Session Initiation Protocol", RFC 3261,
June 2002.
Koodli Informational [Page 8]
RFC 4882 MIP6 Location Privacy May 2007
[RFC3825] Polk, J., Schnizlein, J., and M. Linsner, "Dynamic Host
Configuration Protocol Option for Coordinate-based
Location Configuration Information", RFC 3825, July 2004.
[RFC4301] Kent, S. and K. Seo, "Security Architecture for the
Internet Protocol", RFC 4301, December 2005.
Koodli Informational [Page 9]
RFC 4882 MIP6 Location Privacy May 2007
Appendix A. Background
The location privacy topic is broad and often has different
connotations. It also spans multiple layers in the OSI reference
model. Besides, there are attributes beyond an IP address alone that
can reveal hints about location. For instance, even if a
correspondent is communicating with the same endpoint it is used to,
the "time of day" attribute can reveal a hint to the user. Some
roaming cellphone users may have noticed that their SMS messages
carry a timestamp of their "home network" time zone (for location
privacy or otherwise), which can reveal that the user is in a
different time zone when messages are sent during a "normal" time of
the day. Furthermore, tools exist on the Internet that can map an IP
address to the physical address of an ISP or the organization that
owns the prefix chunk. Taking this to another step, with built-in
GPS receivers on IP hosts, applications can be devised to map geo-
locations to IP network information. Even without GPS receivers,
geo-locations can also be obtained in environments where "Geopriv" is
supported, for instance, as a DHCP option [RFC3825]. In summary, a
user's physical location can be determined or guessed with some
certainty and with varying levels of granularity by different means,
even though IP addresses themselves do not inherently provide any
geo-location information. It is perhaps useful to bear this broad
scope in mind as the problem of IP address location privacy in the
presence of IP Mobility is addressed.
Author's Address
Rajeev Koodli
Nokia Siemens Networks
313 Fairchild Drive
Mountain View, CA 94043
EMail: rajeev.koodli@nokia.com
Koodli Informational [Page 10]
RFC 4882 MIP6 Location Privacy May 2007
Full Copyright Statement
Copyright (C) The IETF Trust (2007).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Koodli Informational [Page 11]
ERRATA