rfc6691









Internet Engineering Task Force (IETF)                         D. Borman
Request for Comments: 6691                           Quantum Corporation
Updates: 879, 2385                                             July 2012
Category: Informational
ISSN: 2070-1721


               TCP Options and Maximum Segment Size (MSS)

Abstract

   This memo discusses what value to use with the TCP Maximum Segment
   Size (MSS) option, and updates RFC 879 and RFC 2385.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Not all documents
   approved by the IESG are a candidate for any level of Internet
   Standard; see Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc6691.

Copyright Notice

   Copyright (c) 2012 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.







Borman                        Informational                     [Page 1]

RFC 6691                   TCP Options and MSS                 July 2012


1.  Introduction

   There has been some confusion as to what value to use with the TCP
   MSS option when using IP and TCP options.  RFC 879 [RFC879] states:

      The MSS counts only data octets in the segment, it does not count
      the TCP header or the IP header.

   This statement is unclear about what to do about IP and TCP options,
   since they are part of the headers.  RFC 1122 [RFC1122] clarified the
   MSS option, which is discussed in Appendix A, but there still seems
   to be some confusion.

1.1.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

2.  The Short Statement

   When calculating the value to put in the TCP MSS option, the MTU
   value SHOULD be decreased by only the size of the fixed IP and TCP
   headers and SHOULD NOT be decreased to account for any possible IP or
   TCP options; conversely, the sender MUST reduce the TCP data length
   to account for any IP or TCP options that it is including in the
   packets that it sends.  The rest of this document just expounds on
   that statement, and the goal is to avoid IP-level fragmentation of
   TCP packets.

   The size of the fixed TCP header is 20 bytes [RFC793], the size of
   the fixed IPv4 header is 20 bytes [RFC791], and the size of the fixed
   IPv6 header is 40 bytes [RFC2460].  The determination of what MTU
   value should be used, especially in the case of multi-homed hosts, is
   beyond the scope of this document.

3.  MSS in Other RFCs

3.1.  RFC 879

   RFC 879 [RFC879] discusses the MSS option and other topics.  In the
   Introduction, it states:

      THE TCP MAXIMUM SEGMENT SIZE IS THE IP MAXIMUM DATAGRAM SIZE MINUS
      FORTY.






Borman                        Informational                     [Page 2]

RFC 6691                   TCP Options and MSS                 July 2012


   In Section 13, it states:

      The definition of the MSS option can be stated:

         The maximum number of data octets that may be received by the
         sender of this TCP option in TCP segments with no TCP header
         options transmitted in IP datagrams with no IP header options.

   These are both correct.  However, in the next paragraph -- in
   Section 14 -- it then confuses this by stating that the consequence
   is:

      When TCP is used in a situation when either the IP or TCP headers
      are not minimum and yet the maximum IP datagram that can be
      received remains 576 octets then the TCP Maximum Segment Size
      option must be used to reduce the limit on data octets allowed in
      a TCP segment.

         For example, if the IP Security option (11 octets) were in use
         and the IP maximum datagram size remained at 576 octets, then
         the TCP should send the MSS with a value of 525 (536-11).

   That is incorrect.  The simpler and more correct statement would be:

      When TCP is used in a situation where either the IP or TCP headers
      are not minimum, the sender must reduce the amount of TCP data in
      any given packet by the number of octets used by the IP and TCP
      options.

3.2.  RFC 2385

   RFC 2385 [RFC2385] incorrectly states, in Section 4.3:

      As with other options that are added to every segment, the size of
      the MD5 option must be factored into the MSS offered to the other
      side during connection negotiation.  Specifically, the size of the
      header to subtract from the MTU (whether it is the MTU of the
      outgoing interface or IP's minimal MTU of 576 bytes) is now at
      least 18 bytes larger.

   This is incorrect.  The value for the MSS option is only adjusted by
   the fixed IP and TCP headers.









Borman                        Informational                     [Page 3]

RFC 6691                   TCP Options and MSS                 July 2012


4.  Clarification from the TCP Large Windows Mailing List

   The initial clarification was sent to the TCP Large Windows mailing
   list in 1993 [Borman93]; this section is based on that message.

   The MSS value to be sent in an MSS option should be equal to the
   effective MTU minus the fixed IP and TCP headers.  By ignoring both
   IP and TCP options when calculating the value for the MSS option, if
   there are any IP or TCP options to be sent in a packet, then the
   sender must decrease the size of the TCP data accordingly.  The
   reason for this can be seen in the following table:

                          +--------------------+--------------------+
                          | MSS is adjusted    | MSS isn't adjusted |
                          | to include options | to include options |
     +--------------------+--------------------+--------------------+
     | Sender adjusts     | Packets are too    | Packets are the    |
     | packet length      | short              | correct length     |
     | for options        |                    |                    |
     +--------------------+--------------------+--------------------+
     | Sender doesn't     | Packets are the    | Packets are too    |
     | adjust packet      | correct length     | long               |
     | length for options |                    |                    |
     +--------------------+--------------------+--------------------+

   The goal is to not send IP datagrams that have to be fragmented, and
   packets sent with the constraints in the lower right of this grid
   will cause IP fragmentation.  Since the sender doesn't know if the
   received MSS option was adjusted to include options, the only way to
   guarantee that the packets are not too long is for the data sender to
   decrease the TCP data length by the size of the IP and TCP options.
   It follows, then, that since the sender will be adjusting the TCP
   data length when sending IP and TCP options, there is no need to
   include the IP and TCP option lengths in the MSS value.

   Another argument against including IP or TCP options in the
   determination of the MSS value is that the MSS is a fixed value, and
   by their very nature the lengths of IP and TCP options are variable,
   so the MSS value can never accurately reflect all possible IP and TCP
   option combinations.  The only one that knows for sure how many IP
   and TCP options are in any given packet is the sender; hence, the
   sender should be doing the adjustment to the TCP data length to
   account for any IP and TCP options.








Borman                        Informational                     [Page 4]

RFC 6691                   TCP Options and MSS                 July 2012


5.  Additional Considerations

5.1.  Path MTU Discovery

   The TCP MSS option specifies an upper bound for the size of packets
   that can be received.  Hence, setting the value in the MSS option too
   small can impact the ability for Path MTU Discovery to find a larger
   path MTU.  For more information on Path MTU Discovery, see:

      o  "Path MTU Discovery" [RFC1191]

      o  "TCP Problems with Path MTU Discovery" [RFC2923]

      o  "Packetization Layer Path MTU Discovery" [RFC4821]

5.2.  Interfaces with Variable MSS Values

   The effective MTU can sometimes vary, as when used with variable
   compression, e.g., RObust Header Compression (ROHC) [RFC5795].  It is
   tempting for TCP to want to advertise the largest possible MSS, to
   support the most efficient use of compressed payloads.
   Unfortunately, some compression schemes occasionally need to transmit
   full headers (and thus smaller payloads) to resynchronize state at
   their endpoint compressors/decompressors.  If the largest MTU is used
   to calculate the value to advertise in the MSS option, TCP
   retransmission may interfere with compressor resynchronization.

   As a result, when the effective MTU of an interface varies, TCP
   SHOULD use the smallest effective MTU of the interface to calculate
   the value to advertise in the MSS option.

5.3.  IPv6 Jumbograms

   In order to support TCP over IPv6 jumbograms, implementations need to
   be able to send TCP segments larger than 64K.  RFC 2675 [RFC2675]
   defines that a value of 65,535 is to be treated as infinity, and Path
   MTU Discovery [RFC1981] is used to determine the actual MSS.

5.4.  Avoiding Fragmentation

   Packets that are too long will either be fragmented or dropped.  If
   packets are fragmented, intermediary firewalls or middle boxes may
   drop the fragmented packets.  In either case, when packets are
   dropped, the connection can fail; hence, it is best to avoid
   generating fragments.






Borman                        Informational                     [Page 5]

RFC 6691                   TCP Options and MSS                 July 2012


6.  Security Considerations

   This document clarifies how to determine what value should be used
   for the MSS option and does not introduce any new security concerns.

7.  References

7.1.  Normative References

   [RFC791]    Postel, J., "Internet Protocol", STD 5, RFC 791,
               September 1981.

   [RFC793]    Postel, J., "Transmission Control Protocol", STD 7,
               RFC 793, September 1981.

   [RFC879]    Postel, J., "The TCP Maximum Segment Size and Related
               Topics", RFC 879, November 1983.

   [RFC1122]   Braden, R., Ed., "Requirements for Internet Hosts -
               Communication Layers", STD 3, RFC 1122, October 1989.

   [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2460]   Deering, S. and R. Hinden, "Internet Protocol, Version 6
               (IPv6) Specification", RFC 2460, December 1998.

   [RFC2675]   Borman, D., Deering, S., and R. Hinden, "IPv6
               Jumbograms", RFC 2675, August 1999.

7.2.  Informative References

   [Borman93]  Borman, D., "TCP MSS & Timestamps", Message to the tcplw
               mailing list, January 7, 1993.

   [RFC1191]   Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
               November 1990.

   [RFC1981]   McCann, J., Deering, S., and J. Mogul, "Path MTU
               Discovery for IP version 6", RFC 1981, August 1996.

   [RFC2385]   Heffernan, A., "Protection of BGP Sessions via the TCP
               MD5 Signature Option", RFC 2385, August 1998.

   [RFC2923]   Lahey, K., "TCP Problems with Path MTU Discovery",
               RFC 2923, September 2000.





Borman                        Informational                     [Page 6]

RFC 6691                   TCP Options and MSS                 July 2012


   [RFC4821]   Mathis, M. and J. Heffner, "Packetization Layer Path MTU
               Discovery", RFC 4821, March 2007.

   [RFC5795]   Sandlund, K., Pelletier, G., and L-E. Jonsson, "The
               RObust Header Compression (ROHC) Framework", RFC 5795,
               March 2010.













































Borman                        Informational                     [Page 7]

RFC 6691                   TCP Options and MSS                 July 2012


Appendix A.  Details from RFC 793 and RFC 1122

   RFC 793 [RFC793] defines the MSS option as follows:

      Maximum Segment Size Option Data:  16 bits

         If this option is present, then it communicates the maximum
         receive segment size at the TCP which sends this segment.  This
         field must only be sent in the initial connection request
         (i.e., in segments with the SYN control bit set).  If this
         option is not used, any segment size is allowed.

   RFC 1122 [RFC1122] provides additional clarification in
   Section 4.2.2.6, on pages 85-86.  First, it changes the default
   behavior when the MSS option is not present:

      If an MSS option is not received at connection setup, TCP MUST
      assume a default send MSS of 536 (576-40) [TCP:4].

   Then, it clarifies how to determine the value to use in the MSS
   option:

      The MSS value to be sent in an MSS option must be less than or
      equal to:

         MMS_R - 20

      where MMS_R is the maximum size for a transport-layer message that
      can be received (and reassembled).  TCP obtains MMS_R and MMS_S
      from the IP layer; see the generic call GET_MAXSIZES in
      Section 3.4.

   What is implied in RFC 1122, but not explicitly stated, is that the
   20 is the size of the fixed TCP header.  The definition of MMS_R is
   found in Section 3.3.2, on page 57:

      MMS_R is given by:

         MMS_R = EMTU_R - 20

      since 20 is the minimum size of an IP header.










Borman                        Informational                     [Page 8]

RFC 6691                   TCP Options and MSS                 July 2012


   and on page 56 (also Section 3.3.2):

      We designate the largest datagram size that can be reassembled by
      EMTU_R ("Effective MTU to receive"); this is sometimes called the
      "reassembly buffer size".  EMTU_R MUST be greater than or equal to
      576, SHOULD be either configurable or indefinite, and SHOULD be
      greater than or equal to the MTU of the connected network(s).

   What should be noted here is that EMTU_R is the largest datagram size
   that can be reassembled, not the largest datagram size that can be
   received without fragmentation.  Taking this literally, since most
   modern TCP/IP implementations can reassemble a full 64K IP packet,
   implementations should be using 65535 - 20 - 20, or 65495, for the
   MSS option.  But there is more to it than that.  RFC 1122 also
   states, on page 86:

      The choice of TCP segment size has a strong effect on performance.
      Larger segments increase throughput by amortizing header size and
      per-datagram processing overhead over more data bytes; however, if
      the packet is so large that it causes IP fragmentation, efficiency
      drops sharply if any fragments are lost [IP:9].

   Since it is guaranteed that any IP datagram that is larger than the
   MTU of the connected network will have to be fragmented to be
   received, implementations ignore the "greater than or" part of
   "SHOULD be greater than or equal to the MTU of the connected
   network(s)".  Thus, the MSS value to be sent in an MSS option must be
   less than or equal to:

      EMTU_R - FixedIPhdrsize - FixedTCPhdrsize

   where FixedTCPhdrsize is 20, and FixedIPhdrsize is 20 for IPv4 and 40
   for IPv6.

Author's Address

   David Borman
   Quantum Corporation
   Mendota Heights, MN  55120

   EMail: david.borman@quantum.com










Borman                        Informational                     [Page 9]



ERRATA