rfc7802
Internet Engineering Task Force (IETF) S. Emery
Request for Comments: 7802 Oracle
Obsoletes: 4402 N. Williams
Category: Standards Track Cryptonector
ISSN: 2070-1721 March 2016
A Pseudo-Random Function (PRF) for the Kerberos V Generic Security
Service Application Program Interface (GSS-API) Mechanism
Abstract
This document defines the Pseudo-Random Function (PRF) for the
Kerberos V mechanism for the Generic Security Service Application
Program Interface (GSS-API), based on the PRF defined for the
Kerberos V cryptographic framework, for keying application protocols
given an established Kerberos V GSS-API security context.
This document obsoletes RFC 4402 and reclassifies that document as
Historic. RFC 4402 starts the PRF+ counter at 1; however, a number
of implementations start the counter at 0. As a result, the original
specification would not be interoperable with existing
implementations.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7802.
Emery & Williams Standards Track [Page 1]
RFC 7802 A PRF for the Kerberos V Mech March 2016
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Conventions Used in This Document . . . . . . . . . . . . . . 2
3. Kerberos V GSS Mechanism PRF . . . . . . . . . . . . . . . . 3
4. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 3
5. Security Considerations . . . . . . . . . . . . . . . . . . . 4
6. Normative References . . . . . . . . . . . . . . . . . . . . 4
Appendix A. Test Vectors . . . . . . . . . . . . . . . . . . . . 6
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 8
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 8
1. Introduction
This document specifies the Kerberos V GSS-API mechanism's [RFC4121]
pseudo-random function corresponding to [RFC4401]. The function is a
"PRF+" style construction. For more information, see [RFC4401],
[RFC2743], [RFC2744], and [RFC4121].
This document obsoletes RFC 4402 and reclassifies that document as
Historic. RFC 4402 starts the PRF+ counter at 1; however, a number
of implementations start the counter at 0. As a result, the original
specification would not be interoperable with existing
implementations.
2. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
Emery & Williams Standards Track [Page 2]
RFC 7802 A PRF for the Kerberos V Mech March 2016
3. Kerberos V GSS Mechanism PRF
The GSS-API PRF [RFC4401] function for the Kerberos V mechanism
[RFC4121] shall be the output of a PRF+ function based on the
encryption type's PRF function keyed with the negotiated session key
of the security context corresponding to the 'prf_key' input
parameter of GSS_Pseudo_random().
This PRF+ MUST be keyed with the key indicated by the 'prf_key' input
parameter as follows:
o GSS_C_PRF_KEY_FULL -- use the sub-session key asserted by the
acceptor (if any exists), or the sub-session asserted by the
initiator (if any exists), or the Ticket's session key.
o GSS_C_PRF_KEY_PARTIAL -- use the sub-session key asserted by the
initiator (if any exists) or the Ticket's session key.
The PRF+ function is a simple counter-based extension of the Kerberos
V pseudo-random function [RFC3961] for the encryption type of the
security context's keys:
PRF+(K, L, S) = truncate(L, T0 || T1 || .. || Tn)
Tn = pseudo-random(K, n || S)
where K is the key indicated by the 'prf_key' parameter, '||' is the
concatenation operator, 'n' is encoded as a network byte order 32-bit
unsigned binary number, truncate(L, S) truncates the input octet
string S to length L, and pseudo-random() is the Kerberos V pseudo-
random function [RFC3961].
The maximum output size of the Kerberos V mechanism's GSS-API PRF
then is, necessarily, 2^32 times the output size of the pseudo-
random() function for the encryption type of the given key.
When the input size is longer than 2^14 octets as per [RFC4401] and
exceeds an implementation's resources, then the mechanism MUST return
GSS_S_FAILURE and GSS_KRB5_S_KG_INPUT_TOO_LONG as the minor status
code.
4. IANA Considerations
This document has no IANA considerations currently. If and when a
relevant IANA registry of GSS-API symbols and constants is created,
then the GSS_KRB5_S_KG_INPUT_TOO_LONG minor status code should be
added to such a registry.
Emery & Williams Standards Track [Page 3]
RFC 7802 A PRF for the Kerberos V Mech March 2016
5. Security Considerations
Kerberos V encryption types' PRF functions use a key derived from
contexts' session keys and should preserve the forward security
properties of the mechanisms' key exchanges.
Legacy Kerberos V encryption types may be weak, particularly the
single-DES encryption types.
See also [RFC4401] for generic security considerations of
GSS_Pseudo_random().
See also [RFC3961] for generic security considerations of the
Kerberos V cryptographic framework.
Use of Ticket session keys, rather than sub-session keys, when
initiators and acceptors fail to assert sub-session keys, is
dangerous as ticket reuse can lead to key reuse; therefore,
initiators should assert sub-session keys always, and acceptors
should assert sub-session keys at least when initiators fail to do
so.
The computational cost of computing this PRF+ may vary depending on
the Kerberos V encryption types being used, but generally the
computation of this PRF+ gets more expensive as the input and output
octet string lengths grow (note that the use of a counter in the PRF+
construction allows for parallelization).
6. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
[RFC2743] Linn, J., "Generic Security Service Application Program
Interface Version 2, Update 1", RFC 2743,
DOI 10.17487/RFC2743, January 2000,
<http://www.rfc-editor.org/info/rfc2743>.
[RFC2744] Wray, J., "Generic Security Service API Version 2 :
C-bindings", RFC 2744, DOI 10.17487/RFC2744, January 2000,
<http://www.rfc-editor.org/info/rfc2744>.
[RFC3961] Raeburn, K., "Encryption and Checksum Specifications for
Kerberos 5", RFC 3961, DOI 10.17487/RFC3961, February
2005, <http://www.rfc-editor.org/info/rfc3961>.
Emery & Williams Standards Track [Page 4]
RFC 7802 A PRF for the Kerberos V Mech March 2016
[RFC4121] Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
Version 5 Generic Security Service Application Program
Interface (GSS-API) Mechanism: Version 2", RFC 4121,
DOI 10.17487/RFC4121, July 2005,
<http://www.rfc-editor.org/info/rfc4121>.
[RFC4401] Williams, N., "A Pseudo-Random Function (PRF) API
Extension for the Generic Security Service Application
Program Interface (GSS-API)", RFC 4401,
DOI 10.17487/RFC4401, February 2006,
<http://www.rfc-editor.org/info/rfc4401>.
Emery & Williams Standards Track [Page 5]
RFC 7802 A PRF for the Kerberos V Mech March 2016
Appendix A. Test Vectors
Here are some test vectors from the MIT implementation provided by
Greg Hudson. Test cases used include input string lengths of 0 and
61 bytes, and an output length of 44 bytes. 61 bytes of input is
just enough to produce a partial second MD5 or SHA1 hash block with
the four-byte counter prefix. 44 bytes of output requires two full
and one partial RFC 3961 PRF output for all existing enctypes. All
keys were randomly generated.
Enctype: des-cbc-crc
Key: E607FE9DABB57AE0
Input: (empty string)
Output: 803C4121379FC4B87CE413B67707C4632EBED2C6D6B7
2A55E878836E35E21600D915D590DED5B6D77BB30A1F
Enctype: des-cbc-crc
Key: 54758316B6257A75
Input: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz123456789
Output: 279E4105F7ADC9BD6EF28ABE31D89B442FE0058388BA
33264ACB5729562DC637950F6BD144B654BE7700B2D6
Enctype: des3-cbc-sha1
Key: 70378A19CD64134580C27C0115D6B34A1CF2FEECEF9886A2
Input: (empty string)
Output: 9F8D127C520BB826BFF3E0FE5EF352389C17E0C073D9
AC4A333D644D21BA3EF24F4A886D143F85AC9F6377FB
Enctype: des3-cbc-sha1
Key: 3452A167DF1094BA1089E0A20E9E51ABEF1525922558B69E
Input: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz123456789
Output: 6BF24FABC858F8DD9752E4FCD331BB831F238B5BE190
4EEA42E38F7A60C588F075C5C96A67E7F8B7BD0AECF4
Enctype: rc4-hmac
Key: 3BB3AE288C12B3B9D06B208A4151B3B6
Input: (empty string)
Output: 9AEA11A3BCF3C53F1F91F5A0BA2132E2501ADF5F3C28
3C8A983AB88757CE865A22132D6100EAD63E9E291AFA
Enctype: rc4-hmac
Key: 6DB7B33A01BD2B72F7655CB7B3D5FA0B
Input: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz123456789
Output: CDA9A544869FC84873B692663A82AFDA101C8611498B
A46138B01E927C9B95EEC953B562807434037837DDDF
Emery & Williams Standards Track [Page 6]
RFC 7802 A PRF for the Kerberos V Mech March 2016
Enctype: aes128-cts-hmac-sha1-96
Key: 6C742096EB896230312B73972FA28B5D
Input: (empty string)
Output: 94208D982FC1BB7778128BDD77904420B45C9DA699F3
117BCE66E39602128EF0296611A6D191A5828530F20F
Enctype: aes128-cts-hmac-sha1-96
Key: FA61138C109D834A477D24C7311BE6DA
Input: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz123456789
Output: 0FAEDF0F842CC834FEE750487E1B622739286B975FE5
B7F45AB053143C75CA0DF5D3D4BBB80F6A616C7C9027
Enctype: aes256-cts-hmac-sha1-96
Key: 08FCDAFD5832611B73BA7B497FEBFF8C954B4B58031CAD9B977C3B8C25192FD6
Input: (empty string)
Output: E627EFC14EF5B6D629F830C7109DEA0D3D7D36E8CD57
A1F301C5452494A1928F05AFFBEE3360232209D3BE0D
Enctype: aes256-cts-hmac-sha1-96
Key: F5B68B7823D8944F33F41541B4E4D38C9B2934F8D16334A796645B066152B4BE
Input: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz123456789
Output: 112F2B2D878590653CCC7DE278E9F0AA46FA5A380B62
59F774CB7C134FCD37F61A50FD0D9F89BF8FE1A6B593
Enctype: camellia128-cts-cmac
Key: 866E0466A178279A32AC0BDA92B72AEB
Input: (empty string)
Output: 97FBB354BF341C3A160DCC86A7A910FDA824601DF677
68797BACEEBF5D250AE929DEC9760772084267F50A54
Enctype: camellia128-cts-cmac
Key: D4893FD37DA1A211E12DD1E03E0F03B7
Input: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz123456789
Output: 1DEE2FF126CA563A2A2326B9DD3F0095013257414C83
FAD4398901013D55F367C82681186B7B2FE62F746BA4
Enctype: camellia256-cts-cmac
Key: 203071B1AE77BD3D6FCE70174AF95C225B1CED46B35CF52B6479EFEB47E6B063
Input: (empty string)
Output: 9B30020634C10FDA28420CEE7B96B70A90A771CED43A
D8346554163E5949CBAE2FB8EF36AFB6B32CE75116A0
Enctype: camellia256-cts-cmac
Key: A171AD582C1AFBBAD52ABD622EE6B6A14D19BF95C6914B2BA40FFD99A88EC660
Input: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz123456789
Output: A47CBB6E104DCC77E4DB48A7A474B977F2FB6A7A1AB6
52317D50508AE72B7BE2E4E4BA24164E029CBACF786B
Emery & Williams Standards Track [Page 7]
RFC 7802 A PRF for the Kerberos V Mech March 2016
Acknowledgements
This document is an update to RFC 4402, which was authored by Nico
Williams. Greg Hudson has provided the test vectors based on MIT's
implementation.
Authors' Addresses
Shawn Emery
Oracle Corporation
500 Eldorado Blvd Bldg 1
Broomfield, CO 78727
United States
EMail: shawn.emery@oracle.com
Nicolas Williams
Cryptonector, LLC
EMail: nico@cryptonector.com
Emery & Williams Standards Track [Page 8]
ERRATA