LAMPS                                                       M. Ounsworth
Internet-Draft                                                   J. Gray
Intended status: Standards Track                                 Entrust
Expires: 9 January 2025                                          M. Pala
                                                             OpenCA Labs
                                                            J. Klaussner
                                                    Bundesdruckerei GmbH
                                                              S. Fluhrer
                                                           Cisco Systems
                                                             8 July 2024


                Composite ML-DSA for use in Internet PKI
                 draft-ietf-lamps-pq-composite-sigs-02

Abstract

   This document introduces a set of signature schemes that use pairs of
   cryptographic elements such as public keys and signatures to combine
   their security properties.  These schemes effectively mitigate risks
   associated with the adoption of post-quantum cryptography and are
   fully compatible with existing X.509, PKIX, and CMS data structures
   and protocols.  This document defines thirteen specific pairwise
   combinations, namely ML-DSA Composite Schemes, that blend ML-DSA with
   traditional algorithms such as RSA, ECDSA, Ed25519, and Ed448.  These
   combinations are tailored to meet security best practices and
   regulatory requirements.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 9 January 2025.







Ounsworth, et al.        Expires 9 January 2025                 [Page 1]

Internet-Draft             PQ Composite ML-DSA                 July 2024


Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Changes since the -01 version . . . . . . . . . . . . . . . .   3
     1.1.  Changes since adoption by the lamps working group . . . .   4
   2.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
     2.1.  Conventions and Terminology . . . . . . . . . . . . . . .   5
   3.  Composite Signatures Schemes  . . . . . . . . . . . . . . . .   6
     3.1.  Composite Schemes PreHashing  . . . . . . . . . . . . . .   7
   4.  Cryptographic Primitives  . . . . . . . . . . . . . . . . . .   7
     4.1.  Key Generation  . . . . . . . . . . . . . . . . . . . . .   7
     4.2.  Signature Generation  . . . . . . . . . . . . . . . . . .   8
       4.2.1.  Signature Verify  . . . . . . . . . . . . . . . . . .  11
   5.  Composite Key Structures  . . . . . . . . . . . . . . . . . .  12
     5.1.  pk-CompositeSignature . . . . . . . . . . . . . . . . . .  12
     5.2.  CompositeSignaturePublicKey . . . . . . . . . . . . . . .  13
     5.3.  CompositeSignaturePrivateKey  . . . . . . . . . . . . . .  14
     5.4.  Encoding Rules  . . . . . . . . . . . . . . . . . . . . .  14
     5.5.  Key Usage Bits  . . . . . . . . . . . . . . . . . . . . .  15
   6.  Composite Signature Structures  . . . . . . . . . . . . . . .  15
     6.1.  sa-CompositeSignature . . . . . . . . . . . . . . . . . .  15
     6.2.  CompositeSignatureValue . . . . . . . . . . . . . . . . .  16
   7.  Algorithm Identifiers . . . . . . . . . . . . . . . . . . . .  17
     7.1.  Domain Separators . . . . . . . . . . . . . . . . . . . .  19
     7.2.  Notes on id-MLDSA44-RSA2048-PSS-SHA256  . . . . . . . . .  20
     7.3.  Notes on id-MLDSA65-RSA3072-PSS-SHA512  . . . . . . . . .  20
   8.  Use in CMS  . . . . . . . . . . . . . . . . . . . . . . . . .  21
     8.1.  Underlying Components . . . . . . . . . . . . . . . . . .  21
     8.2.  SignedData Conventions  . . . . . . . . . . . . . . . . .  22
     8.3.  Certificate Conventions . . . . . . . . . . . . . . . . .  23
     8.4.  SMIMECapabilities Attribute Conventions . . . . . . . . .  24
   9.  ASN.1 Module  . . . . . . . . . . . . . . . . . . . . . . . .  24
   10. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  31
     10.1.  Object Identifier Allocations  . . . . . . . . . . . . .  31




Ounsworth, et al.        Expires 9 January 2025                 [Page 2]

Internet-Draft             PQ Composite ML-DSA                 July 2024


       10.1.1.  Module Registration - SMI Security for PKIX Module
               Identifier  . . . . . . . . . . . . . . . . . . . . .  31
       10.1.2.  Object Identifier Registrations - SMI Security for
               PKIX Algorithms . . . . . . . . . . . . . . . . . . .  31
   11. Security Considerations . . . . . . . . . . . . . . . . . . .  33
     11.1.  Public Key Algorithm Selection Criteria  . . . . . . . .  33
     11.2.  PreHashing Algorithm Selection Criteria  . . . . . . . .  34
     11.3.  Policy for Deprecated and Acceptable Algorithms  . . . .  35
   12. References  . . . . . . . . . . . . . . . . . . . . . . . . .  36
     12.1.  Normative References . . . . . . . . . . . . . . . . . .  36
     12.2.  Informative References . . . . . . . . . . . . . . . . .  38
   Appendix A.  Component Algorithm Reference  . . . . . . . . . . .  41
   Appendix B.  Samples  . . . . . . . . . . . . . . . . . . . . . .  43
     B.1.  Explicit Composite Signature Examples . . . . . . . . . .  43
       B.1.1.  MLDSA44-ECDSA-P256-SHA256 Public Key  . . . . . . . .  43
       B.1.2.  MLDSA44-ECDSA-P256 Private Key  . . . . . . . . . . .  44
       B.1.3.  MLDSA44-ECDSA-P256 Self-Signed X509 Certificate . . .  46
   Appendix C.  Implementation Considerations  . . . . . . . . . . .  48
     C.1.  FIPS certification  . . . . . . . . . . . . . . . . . . .  48
     C.2.  Backwards Compatibility . . . . . . . . . . . . . . . . .  49
       C.2.1.  Hybrid Extensions (Keys and Signatures) . . . . . . .  49
   Appendix D.  Intellectual Property Considerations . . . . . . . .  49
   Appendix E.  Contributors and Acknowledgements  . . . . . . . . .  50
     E.1.  Making contributions  . . . . . . . . . . . . . . . . . .  50
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  50

1.  Changes since the -01 version

   *  Added a "Use in CMS" section

   *  Removed a Falon reference from the ASN.1 document (which was a
      typo in reference to Falcon)

   *  Added SMIME-CAPS into the sa-CompositeSignature definition in the
      ASN.1 module

   *  Fixed nits and other typos

   *  Added PSS parameter Salt Lengths

   *  Changed the OID concatenation section to Domain Separators for
      clarity

   *  Accepted some edits by Jose Ignacio Escribano

   *  Expanded description for KeyGen algorithm

   *  Clarified the Subject Public Key Usage



Ounsworth, et al.        Expires 9 January 2025                 [Page 3]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   *  Various editorial changes

1.1.  Changes since adoption by the lamps working group

   *  Added back in the version 13 changes which were dropped by mistake
      in the initial -00 adopted version

   *  Added Scott Fluher as an author due to his valuable contributions
      and participation in the draft writing process

   *  Removed the reference to Parallel PKI's in implementation
      considerations as it isn't adding value to the discussion

   *  Resolved comments from Kris Kwiatkowski regarding FIPS

2.  Introduction

   The advent of quantum computing poses a significant threat to current
   cryptographic systems.  Traditional cryptographic algorithms such as
   RSA, Diffie-Hellman, DSA, and their elliptic curve variants are
   vulnerable to quantum attacks.  During the transition to post-quantum
   cryptography (PQC), there is considerable uncertainty regarding the
   robustness of both existing and new cryptographic algorithms.  While
   we can no longer fully trust traditional cryptography, we also cannot
   immediately place complete trust in post-quantum replacements until
   they have undergone extensive scrutiny and real-world testing to
   uncover and rectify potential implementation flaws.

   Unlike previous migrations between cryptographic algorithms, the
   decision of when to migrate and which algorithms to adopt is far from
   straightforward.  Even after the migration period, it may be
   advantageous for an entity's cryptographic identity to incorporate
   multiple public-key algorithms to enhance security.

   Cautious implementers may opt to combine cryptographic algorithms in
   such a way that an attacker would need to break all of them
   simultaneously to compromise the protected data.  These mechanisms
   are referred to as Post-Quantum/Traditional (PQ/T) Hybrids
   [I-D.driscoll-pqt-hybrid-terminology].

   Certain jurisdictions are already recommending or mandating that PQC
   lattice schemes be used exclusively within a PQ/T hybrid framework.
   The use of Composite scheme provides a straightforward implementation
   of hybrid solutions compatible with (and advocated by) some
   governments and cybersecurity agencies [BSI2021].






Ounsworth, et al.        Expires 9 January 2025                 [Page 4]

Internet-Draft             PQ Composite ML-DSA                 July 2024


2.1.  Conventions and Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.  These words may also appear in this
   document in lower case as plain English words, absent their normative
   meanings.

   This document is consistent with the terminology defined in
   [I-D.driscoll-pqt-hybrid-terminology].  In addition, the following
   terminology is used throughout this document:

   ALGORITHM: A standardized cryptographic primitive, as well as any
   ASN.1 structures needed for encoding data and metadata needed to use
   the algorithm.  This document is primarily concerned with algorithms
   for producing digital signatures.

   BER: Basic Encoding Rules (BER) as defined in [X.690].

   CLIENT: Any software that is making use of a cryptographic key.  This
   includes a signer, verifier, encrypter, decrypter.

   COMPONENT ALGORITHM: A single basic algorithm which is contained
   within a composite algorithm.

   COMPOSITE ALGORITHM: An algorithm which is a sequence of two
   component algorithms, as defined in Section 5.

   DER: Distinguished Encoding Rules as defined in [X.690].

   LEGACY: For the purposes of this document, a legacy algorithm is any
   cryptographic algorithm currently in use which is not believed to be
   resistant to quantum cryptanalysis.

   PKI: Public Key Infrastructure, as defined in [RFC5280].

   POST-QUANTUM ALGORITHM: Any cryptographic algorithm which is believed
   to be resistant to classical and quantum cryptanalysis, such as the
   algorithms being considered for standardization by NIST.

   PUBLIC / PRIVATE KEY: The public and private portion of an asymmetric
   cryptographic key, making no assumptions about which algorithm.

   SIGNATURE: A digital cryptographic signature, making no assumptions
   about which algorithm.




Ounsworth, et al.        Expires 9 January 2025                 [Page 5]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   STRIPPING ATTACK: An attack in which the attacker is able to
   downgrade the cryptographic object to an attacker-chosen subset of
   original set of component algorithms in such a way that it is not
   detectable by the receiver.  For example, substituting a composite
   public key or signature for a version with fewer components.

3.  Composite Signatures Schemes

   The engineering principle behind the definition of Composite schemes
   is to define a new family of algorithms that combines the use of
   cryptographic operations from two different ones: ML-DSA one and a
   traditional one.  The complexity of combining security properties
   from the selected two algorithms is handled at the cryptographic
   library or cryptographic module, thus minimal changes are expected at
   the application or protocol level.  Composite schemes are fully
   compatible with the X.509 model: composite public keys, composite
   private keys, and ciphertexts can be carried in existing data
   structures and protocols such as PKCS#10 [RFC2986], CMP [RFC4210],
   X.509 [RFC5280], CMS [RFC5652], and the Trust Anchor Format
   [RFC5914].

   Composite schemes are defined as cryptographic primitives that
   consists of three algorithms:

   *  KeyGen() -> (pk, sk): A probabilistic key generation algorithm,
      which generates a public key pk and a secret key sk.

   *  Sign(sk, Message) -> (signature): A signing algorithm which takes
      as input a secret key sk and a Message, and outputs a signature

   *  Verify(pk, Message, signature) -> true or false: A verification
      algorithm which takes as input a public key, a Message, and a
      signature and outputs true if the signature verifies correctly.
      Thus it proves the Message was signed with the secret key
      associated with the public key and verifies the integrity of the
      Message.  If the signature and public key cannot verify the
      Message, it returns false.

   A composite signature allows the security properties of the two
   underlying algorithms to be combined via standard signature
   operations such as generation and verify and can be used in all
   applications that use signatures without the need for changes in data
   structures or protocol messages.








Ounsworth, et al.        Expires 9 January 2025                 [Page 6]

Internet-Draft             PQ Composite ML-DSA                 July 2024


3.1.  Composite Schemes PreHashing

   Composite schemes' signature generation process and composite
   signature verification process are designed to provide security
   properties meant to address specific issues related to the use
   multiple algorithms and they require the use of pre-hasing.  In
   Composite schemes, the value of the DER encoding of the selected
   signature scheme is concatenated with the calculated Hash over the
   original message.

   The output is then used as input for the Sign() and Verify()
   functions.

4.  Cryptographic Primitives

4.1.  Key Generation

   To generate a new keypair for Composite schemes, the KeyGen() -> (pk,
   sk) function is used.  The KeyGen() function calls the two key
   generation functions of the component algorithms for the Composite
   keypair in no particular order.  Multi-process or multi-threaded
   applications might choose to execute the key generation functions in
   parallel for better key generation performance.

   The generated public key structure is described in Section 5.2, while
   the corresponding composite secret key structure is defined in
   Section 5.3.

   The following process is used to generate composite keypair values:






















Ounsworth, et al.        Expires 9 January 2025                 [Page 7]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   KeyGen() -> (pk, sk)

   Input:
        sk_1, sk_2         Private keys for each component.

        pk_1, pk_2         Public keys for each component.

        A1, A2             Component signature algorithms.

   Output:
        (pk, sk)           The composite keypair.

   Function KeyGen():

     (pk_1, sk_1) <- A1.KeyGen()
     (pk_2, sk_2) <- A2.KeyGen()

     if NOT (pk_1, sk_1) or NOT (pk_2, sk_2):
       // Component key generation failure
       return NULL

     (pk, sk) <- encode[(pk_1, sk_1), (pk_2, sk_2)]
     if NOT (pk, sk):
       // Encoding failure
       return False

     // Success
     return (pk, sk)

                     Figure 1: Composite KeyGen(pk, sk)

   The key generation functions MUST be executed for both algorithms.
   Compliant parties MUST NOT use or import component keys that are used
   in other contexts, combinations, or by themselves (i.e., not only in
   X.509 certificates).

4.2.  Signature Generation

   Composite schemes' signatures provide important properties for multi-
   key environments such as non-separability and key-binding.  For more
   information on the additional security properties and their
   applicability to multi-key or hybrid environments, please refer to
   [I-D.hale-pquip-hybrid-signature-spectrums] and the use of labels as
   defined in [Bindel2017]







Ounsworth, et al.        Expires 9 January 2025                 [Page 8]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   Composite signature generation starts with pre-hashing the message
   that is concatenated with the Domain separator Section 7.1.  After
   that, the signature process for each component algorithm is invoked
   and the values are then placed in the CompositeSignatureValue
   structure defined in Section 6.1.

   A composite signature's value MUST include two signature components
   and MUST be in the same order as the components from the
   corresponding signing key.

   The following process is used to generate composite signature values.








































Ounsworth, et al.        Expires 9 January 2025                 [Page 9]

Internet-Draft             PQ Composite ML-DSA                 July 2024


Sign (sk, Message) -> (signature)
Input:
     K1, K2             Signing private keys for each component. See note below on
                        composite inputs.

     A1, A2             Component signature algorithms. See note below on
                        composite inputs.

     Message            The Message to be signed, an octet string

     HASH               The Message Digest Algorithm used for pre-hashing.  See section
                        on pre-hashing below.

     Domain             Domain separator value for binding the signature to the Composite OID.
                        See section on Domain Separators below.

Output:
     signature          The composite signature, a CompositeSignatureValue

Signature Generation Process:

   1. Compute the new Message M' by concatenating the Domain identifier (i.e., the DER encoding of the Composite signature algorithm identifier) with the Hash of the Message

         M' := Domain || HASH(Message)

   2. Generate the 2 component signatures independently, by calculating the signature over M'
      according to their algorithm specifications that might involve the use of the hash-n-sign paradigm.

         S1 := Sign( K1, A1, M' )
         S2 := Sign( K2, A2, M' )

   3. Encode each component signature S1 and S2 into a BIT STRING
      according to its algorithm specification.

        signature := NULL

        IF (S1 != NULL) and (S2 != NULL):
          signature := Sequence { S1, S2 }

   4. Output signature

        return signature

                Figure 2: Composite Sign(sk, Message)

   It is possible to construct CompositePrivateKey(s) to generate
   signatures from component keys stored in separate software or
   hardware keystores.  Variations in the process to accommodate



Ounsworth, et al.        Expires 9 January 2025                [Page 10]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   particular private key storage mechanisms are considered to be
   conformant to this document so long as it produces the same output as
   the process sketched above.

4.2.1.  Signature Verify

   Verification of a composite signature involves reconstructing the M'
   message first by concatenating the Domain separator (i.e., the DER
   encoding of the used Composite scheme's OID) with the Hash of the
   original message and then applying each component algorithm's
   verification process to the new message M'.

   Compliant applications MUST output "Valid signature" (true) if and
   only if all component signatures were successfully validated, and
   "Invalid signature" (false) otherwise.

   The following process is used to perform this verification.

Composite Verify(pk, Message, signature)
Input:
     P1, P2             Public verification keys. See note below on
                        composite inputs.

     Message            Message whose signature is to be verified,
                        an octet string.

     signature          CompositeSignatureValue containing the component
                        signature values (S1 and S2) to be verified.

     A1, A2             Component signature algorithms. See note
                        below on composite inputs.

     HASH               The Message Digest Algorithm for pre-hashing.  See
                        section on pre-hashing the message below.

     Domain             Domain separator value for binding the signature to the Composite OID.
                        See section on Domain Separators below.

Output:
    Validity (bool)    "Valid signature" (true) if the composite
                        signature is valid, "Invalid signature"
                        (false) otherwise.

Signature Verification Procedure::
   1. Check keys, signatures, and algorithms lists for consistency.

      If Error during Desequencing, or the sequences have
      different numbers of elements, or any of the public keys



Ounsworth, et al.        Expires 9 January 2025                [Page 11]

Internet-Draft             PQ Composite ML-DSA                 July 2024


      P1 or P2 and the algorithm identifiers A1 or A2 are
      composite then output "Invalid signature" and stop.

   2. Compute a Hash of the Message

         M' = Domain || HASH(Message)

   3. Check each component signature individually, according to its
       algorithm specification.
       If any fail, then the entire signature validation fails.

       if not verify( P1, M', S1, A1 ) then
            output "Invalid signature"
       if not verify( P2, M', S2, A2 ) then
            output "Invalid signature"

       if all succeeded, then
        output "Valid signature"

          Figure 3: Composite Verify(pk, Message, signature)

   It is possible to construct CompositePublicKey(s) to verify
   signatures from component keys stored in separate software or
   hardware keystores.  Variations in the process to accommodate
   particular private key storage mechanisms are considered to be
   conformant to this document so long as it produces the same output as
   the process sketched above.

5.  Composite Key Structures

   In order for signatures to be composed of multiple algorithms, we
   define encodings consisting of a sequence of signature primitives
   (aka "component algorithms") such that these structures can be used
   as a drop-in replacement for existing signature fields such as those
   found in PKCS#10 [RFC2986], CMP [RFC4210], X.509 [RFC5280], CMS
   [RFC5652].

5.1.  pk-CompositeSignature

   The following ASN.1 Information Object Class is a template to be used
   in defining all composite Signature public key types.










Ounsworth, et al.        Expires 9 January 2025                [Page 12]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   pk-CompositeSignature {OBJECT IDENTIFIER:id,
     FirstPublicKeyType,SecondPublicKeyType}
       PUBLIC-KEY ::= {
         IDENTIFIER id
         KEY SEQUENCE {
           firstPublicKey BIT STRING (CONTAINING FirstPublicKeyType),
           secondPublicKey BIT STRING (CONTAINING SecondPublicKeyType)
         }
         PARAMS ARE absent
         CERT-KEY-USAGE { digitalSignature, nonRepudiation, keyCertSign, cRLSign}
       }

   As an example, the public key type pk-MLDSA65-ECDSA-P256-SHA256 is
   defined as:

   pk-MLDSA65-ECDSA-P256-SHA256 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA65-ECDSA-P256-SHA256,
     OCTET STRING, ECPoint}

   The full set of key types defined by this specification can be found
   in the ASN.1 Module in Section 9.

5.2.  CompositeSignaturePublicKey

   Composite public key data is represented by the following structure:

   CompositeSignaturePublicKey ::= SEQUENCE SIZE (2) OF BIT STRING

   A composite key MUST contain two component public keys.  The order of
   the component keys is determined by the definition of the
   corresponding algorithm identifier as defined in section Section 7.

   Some applications may need to reconstruct the SubjectPublicKeyInfo
   objects corresponding to each component public key.  Table 2 in
   Section 7 provides the necessary mapping between composite and their
   component algorithms for doing this reconstruction.  This also
   motivates the design choice of SEQUENCE OF BIT STRING instead of
   SEQUENCE OF OCTET STRING; using BIT STRING allows for easier
   transcription between CompositeSignaturePublicKey and
   SubjectPublicKeyInfo.

   When the CompositeSignaturePublicKey must be provided in octet string
   or bit string format, the data structure is encoded as specified in
   Section 5.4.

   Component keys of a CompositeSignaturePublicKey MUST NOT be used in
   any other type of key or as a standalone key.




Ounsworth, et al.        Expires 9 January 2025                [Page 13]

Internet-Draft             PQ Composite ML-DSA                 July 2024


5.3.  CompositeSignaturePrivateKey

   Use cases that require an interoperable encoding for composite
   private keys, such as when private keys are carried in PKCS #12
   [RFC7292], CMP [RFC4210] or CRMF [RFC4211] MUST use the following
   structure.

   CompositeSignaturePrivateKey ::= SEQUENCE SIZE (2) OF OneAsymmetricKey

   Each element is a OneAsymmetricKey` [RFC5958] object for a component
   private key.

   The parameters field MUST be absent.

   The order of the component keys is the same as the order defined in
   Section 5.2 for the components of CompositeSignaturePublicKey.

   When a CompositeSignaturePrivateKey is conveyed inside a
   OneAsymmetricKey structure (version 1 of which is also known as
   PrivateKeyInfo) [RFC5958], the privateKeyAlgorithm field SHALL be set
   to the corresponding composite algorithm identifier defined according
   to Section 7, the privateKey field SHALL contain the
   CompositeSignaturePrivateKey, and the publicKey field MUST NOT be
   present.  Associated public key material MAY be present in the
   CompositeSignaturePrivateKey.

   In some usecases the private keys that comprise a composite key may
   not be represented in a single structure or even be contained in a
   single cryptographic module; for example if one component is within
   the FIPS boundary of a cryptographic module and the other is not; see
   {sec-fips} for more discussion.  The establishment of correspondence
   between public keys in a CompositeSignaturePublicKey and private keys
   not represented in a single composite structure is beyond the scope
   of this document.

   Component keys of a CompositeSignaturePrivateKey MUST NOT be used in
   any other type of key or as a standalone key.

5.4.  Encoding Rules

   Many protocol specifications will require that the composite public
   key and composite private key data structures be represented by an
   octet string or bit string.

   When an octet string is required, the DER encoding of the composite
   data structure SHALL be used directly.

   CompositeSignaturePublicKeyOs ::= OCTET STRING (CONTAINING CompositeSignaturePublicKey ENCODED BY der)



Ounsworth, et al.        Expires 9 January 2025                [Page 14]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   When a bit string is required, the octets of the DER encoded
   composite data structure SHALL be used as the bits of the bit string,
   with the most significant bit of the first octet becoming the first
   bit, and so on, ending with the least significant bit of the last
   octet becoming the last bit of the bit string.

   CompositeSignaturePublicKeyBs ::= BIT STRING (CONTAINING CompositeSignaturePublicKey ENCODED BY der)

   In the interests of simplicity and avoiding compatibility issues,
   implementations that parse these structures MAY accept both BER and
   DER.

5.5.  Key Usage Bits

   For protocols such as X.509 [RFC5280] that specify key usage along
   with the public key, then the composite public key associated with a
   composite signature MUST have a signing-type key usage.  This is
   because the composite public key can only be used in situations that
   are appropriate for both component algorithms, so even if the
   classical component key supports both signing and encryption, the
   post-quantum algorithms do not.

   If the keyUsage extension is present in a Certification Authority
   (CA) certificate that indicates a composite key, then any combination
   of the following values MAY be present and any other values MUST NOT
   be present:

   digitalSignature;
   nonRepudiation;
   keyCertSign; and
   cRLSign.

   If the keyUsage extension is present in an End Entity (EE)
   certificate that indicates a composite key, then any combination of
   the following values MAY be present and any other values MUST NOT be
   present:

   digitalSignature; and
   nonRepudiation;

6.  Composite Signature Structures

6.1.  sa-CompositeSignature

   The ASN.1 algorithm object for a composite signature is:






Ounsworth, et al.        Expires 9 January 2025                [Page 15]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   sa-CompositeSignature {
     OBJECT IDENTIFIER:id,
       PUBLIC-KEY:publicKeyType }
       SIGNATURE-ALGORITHM ::= {
           IDENTIFIER id
           VALUE CompositeSignatureValue
           PARAMS ARE absent
           PUBLIC-KEYS { publicKeyType }
           SMIME-CAPS { IDENTIFIED BY id }
       }

   The following is an explanation how SIGNATURE-ALGORITHM elements are
   used to create Composite Signatures:

    +=============================+===================================+
    | SIGNATURE-ALGORITHM element | Definition                        |
    +=============================+===================================+
    | IDENTIFIER                  | The Object ID used to identify    |
    |                             | the composite Signature Algorithm |
    +-----------------------------+-----------------------------------+
    | VALUE                       | The Sequence of BIT STRINGS for   |
    |                             | each component signature value    |
    +-----------------------------+-----------------------------------+
    | PARAMS                      | Parameters are absent             |
    +-----------------------------+-----------------------------------+
    | PUBLIC-KEYS                 | The composite key required to     |
    |                             | produce the composite signature   |
    +-----------------------------+-----------------------------------+

                                  Table 1

6.2.  CompositeSignatureValue

   The output of the composite signature algorithm is the DER encoding
   of the following structure:

   CompositeSignatureValue ::= SEQUENCE SIZE (2) OF BIT STRING

   Where each BIT STRING within the SEQUENCE is a signature value
   produced by one of the component keys.  It MUST contain one signature
   value produced by each component algorithm, and in the same order as
   specified in the object identifier.

   The choice of SEQUENCE SIZE (2) OF BIT STRING, rather than for
   example a single BIT STRING containing the concatenated signature
   values, is to gracefully handle variable-length signature values by
   taking advantage of ASN.1's built-in length fields.




Ounsworth, et al.        Expires 9 January 2025                [Page 16]

Internet-Draft             PQ Composite ML-DSA                 July 2024


7.  Algorithm Identifiers

   This section defines the algorithm identifiers for explicit
   combinations.  For simplicity and prototyping purposes, the signature
   algorithm object identifiers specified in this document are the same
   as the composite key object Identifiers.  A proper implementation
   should not presume that the object ID of a composite key will be the
   same as its composite signature algorithm.

   This section is not intended to be exhaustive and other authors may
   define other composite signature algorithms so long as they are
   compatible with the structures and processes defined in this and
   companion public and private key documents.

   Some use-cases desire the flexibility for clients to use any
   combination of supported algorithms, while others desire the rigidity
   of explicitly-specified combinations of algorithms.

   The following table summarizes the details for each explicit
   composite signature algorithms:

   The OID referenced are TBD for prototyping only, and the following
   prefix is used for each:

   replace <CompSig> with the String "2.16.840.1.114027.80.8.1"

   Therefore <CompSig>.1 is equal to 2.16.840.1.114027.80.8.1.1

   Signature public key types:






















Ounsworth, et al.        Expires 9 January 2025                [Page 17]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   +=============================+============+===========+=======================+======+
   |Composite Signature          |OID         |First      |Second AlgorithmID     |Pre-  |
   |AlgorithmID                  |            |AlgorithmID|                       |Hash  |
   +=============================+============+===========+=======================+======+
   |id-MLDSA44-RSA2048-PSS-SHA256|<CompSig>.1 |id-ML-     |id-RSASA-PSS with id-  |id-   |
   |                             |            |DSA-44     |sha256                 |sha256|
   +-----------------------------+------------+-----------+-----------------------+------+
   |id-                          |<CompSig>.2 |id-ML-     |sha256WithRSAEncryption|id-   |
   |MLDSA44-RSA2048-PKCS15-SHA256|            |DSA-44     |                       |sha256|
   +-----------------------------+------------+-----------+-----------------------+------+
   |id-MLDSA44-Ed25519-SHA512    |<CompSig>.3 |id-ML-     |id-Ed25519             |id-   |
   |                             |            |DSA-44     |                       |sha512|
   +-----------------------------+------------+-----------+-----------------------+------+
   |id-MLDSA44-ECDSA-P256-SHA256 |<CompSig>.4 |id-ML-     |ecdsa-with-SHA256 with |id-   |
   |                             |            |DSA-44     |secp256r1              |sha256|
   +-----------------------------+------------+-----------+-----------------------+------+
   |id-MLDSA44-ECDSA-            |<CompSig>.5 |id-ML-     |ecdsa-with-SHA256 with |id-   |
   |brainpoolP256r1-SHA256       |            |DSA-44     |brainpoolP256r1        |sha256|
   +-----------------------------+------------+-----------+-----------------------+------+
   |id-MLDSA65-RSA3072-PSS-SHA512|<CompSig>.6 |id-ML-     |id-RSASA-PSS with id-  |id-   |
   |                             |            |DSA-65     |sha512                 |sha512|
   +-----------------------------+------------+-----------+-----------------------+------+
   |id-                          |<CompSig>.7 |id-ML-     |sha512WithRSAEncryption|id-   |
   |MLDSA65-RSA3072-PKCS15-SHA512|            |DSA-65     |                       |sha512|
   +-----------------------------+------------+-----------+-----------------------+------+
   |id-MLDSA65-ECDSA-P256-SHA512 |<CompSig>.8 |id-ML-     |ecdsa-with-SHA512 with |id-   |
   |                             |            |DSA-65     |secp256r1              |sha512|
   +-----------------------------+------------+-----------+-----------------------+------+
   |id-MLDSA65-ECDSA-            |<CompSig>.9 |id-ML-     |ecdsa-with-SHA512 with |id-   |
   |brainpoolP256r1-SHA512       |            |DSA-65     |brainpoolP256r1        |sha512|
   +-----------------------------+------------+-----------+-----------------------+------+
   |id-MLDSA65-Ed25519-SHA512    |<CompSig>.10|id-ML-     |id-Ed25519             |id-   |
   |                             |            |DSA-65     |                       |sha512|
   +-----------------------------+------------+-----------+-----------------------+------+
   |id-MLDSA87-ECDSA-P384-SHA512 |<CompSig>.11|id-ML-     |ecdsa-with-SHA512 with |id-   |
   |                             |            |DSA-87     |secp384r1              |sha512|
   +-----------------------------+------------+-----------+-----------------------+------+
   |id-MLDSA87-ECDSA-            |<CompSig>.12|id-ML-     |ecdsa-with-SHA512 with |id-   |
   |brainpoolP384r1-SHA512       |            |DSA-87     |brainpoolP384r1        |sha512|
   +-----------------------------+------------+-----------+-----------------------+------+
   |id-MLDSA87-Ed448-SHA512      |<CompSig>.13|id-ML-     |id-Ed448               |id-   |
   |                             |            |DSA-87     |                       |sha512|
   +-----------------------------+------------+-----------+-----------------------+------+

                  Table 2: Composite Signature Algorithms






Ounsworth, et al.        Expires 9 January 2025                [Page 18]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   The table above contains everything needed to implement the listed
   explicit composite algorithms.  See the ASN.1 module in section
   Section 9 for the explicit definitions of the above Composite
   signature algorithms.

   Full specifications for the referenced algorithms can be found in
   Appendix A.

7.1.  Domain Separators

   As mentioned above, the OID input value is used as a domain separator
   for the Composite Signature Generation and verification process and
   is the DER encoding of the OID.  The following table shows the HEX
   encoding for each Signature AlgorithmID.

   +=======================================+==========================+
   |Composite Signature AlgorithmID        |Domain Separator (in Hex  |
   |                                       |encoding)                 |
   +=======================================+==========================+
   |id-MLDSA44-RSA2048-PSS-SHA256          |060B6086480186FA6B50080101|
   +---------------------------------------+--------------------------+
   |id-MLDSA44-RSA2048-PKCS15-SHA256       |060B6086480186FA6B50080102|
   +---------------------------------------+--------------------------+
   |id-MLDSA44-Ed25519-SHA512              |060B6086480186FA6B50080103|
   +---------------------------------------+--------------------------+
   |id-MLDSA44-ECDSA-P256-SHA256           |060B6086480186FA6B50080104|
   +---------------------------------------+--------------------------+
   |id-MLDSA44-ECDSA-brainpoolP256r1-SHA256|060B6086480186FA6B50080105|
   +---------------------------------------+--------------------------+
   |id-MLDSA65-RSA3072-PSS-SHA512          |060B6086480186FA6B50080106|
   +---------------------------------------+--------------------------+
   |id-MLDSA65-RSA3072-PKCS15-SHA512       |060B6086480186FA6B50080107|
   +---------------------------------------+--------------------------+
   |id-MLDSA65-ECDSA-P256-SHA512           |060B6086480186FA6B50080108|
   +---------------------------------------+--------------------------+
   |id-MLDSA65-ECDSA-brainpoolP256r1-SHA512|060B6086480186FA6B50080109|
   +---------------------------------------+--------------------------+
   |id-MLDSA65-Ed25519-SHA512              |060B6086480186FA6B5008010A|
   +---------------------------------------+--------------------------+
   |id-MLDSA87-ECDSA-P384-SHA512           |060B6086480186FA6B5008010B|
   +---------------------------------------+--------------------------+
   |id-MLDSA87-ECDSA-brainpoolP384r1-SHA512|060B6086480186FA6B5008010C|
   +---------------------------------------+--------------------------+
   |id-MLDSA87-Ed448-SHA512                |060B6086480186FA6B5008010D|
   +---------------------------------------+--------------------------+

              Table 3: Composite Signature Domain Separators




Ounsworth, et al.        Expires 9 January 2025                [Page 19]

Internet-Draft             PQ Composite ML-DSA                 July 2024


7.2.  Notes on id-MLDSA44-RSA2048-PSS-SHA256

   Use of RSA-PSS [RFC8017] deserves a special explanation.

   The RSA component keys MUST be generated at the 2048-bit security
   level in order to match with ML-DSA-44

   As with the other composite signature algorithms, when id-
   MLDSA44-RSA2048-PSS-SHA256 is used in an AlgorithmIdentifier, the
   parameters MUST be absent. id-MLDSA44-RSA2048-PSS-SHA256 SHALL
   instantiate RSA-PSS with the following parameters:

                  +==========================+=========+
                  | RSA-PSS Parameter        | Value   |
                  +==========================+=========+
                  | Mask Generation Function | mgf1    |
                  +--------------------------+---------+
                  | Mask Generation params   | SHA-256 |
                  +--------------------------+---------+
                  | Message Digest Algorithm | SHA-256 |
                  +--------------------------+---------+
                  | Salt Length in bits      | 256     |
                  +--------------------------+---------+

                     Table 4: RSA-PSS 2048 Parameters

   where:

   *  Mask Generation Function (mgf1) is defined in [RFC8017]

   *  SHA-256 is defined in [RFC6234].

7.3.  Notes on id-MLDSA65-RSA3072-PSS-SHA512

   The RSA component keys MUST be generated at the 3072-bit security
   level in order to match with ML-DSA-65.

   As with the other composite signature algorithms, when id-
   MLDSA65-RSA3072-PSS-SHA512 is used in an AlgorithmIdentifier, the
   parameters MUST be absent. id-MLDSA65-RSA3072-PSS-SHA512 SHALL
   instantiate RSA-PSS with the following parameters:










Ounsworth, et al.        Expires 9 January 2025                [Page 20]

Internet-Draft             PQ Composite ML-DSA                 July 2024


                  +==========================+=========+
                  | RSA-PSS Parameter        | Value   |
                  +==========================+=========+
                  | Mask Generation Function | mgf1    |
                  +--------------------------+---------+
                  | Mask Generation params   | SHA-512 |
                  +--------------------------+---------+
                  | Message Digest Algorithm | SHA-512 |
                  +--------------------------+---------+
                  | Salt Length in bits      | 512     |
                  +--------------------------+---------+

                     Table 5: RSA-PSS 3072 Parameters

   where:

   *  Mask Generation Function (mgf1) is defined in [RFC8017]

   *  SHA-512 is defined in [RFC6234].

8.  Use in CMS

   [EDNOTE: The convention in LAMPS is to specify algorithms and their
   CMS conventions in separate documents.  Here we have presented them
   in the same document, but this section has been written so that it
   can easily be moved to a standalone document.]

   Composite Signature algorithms MAY be employed for one or more
   recipients in the CMS signed-data content type [RFC5652].

8.1.  Underlying Components

   When a particular Composite Signature OID is supported in CMS, an
   implementation SHOULD support the corresponding Secure Hash algorithm
   identifier in Table 6 that was used as the pre-hash.

   The following table lists the MANDATORY HASH algorithms to preserve
   security and performance characteristics of each composite algorithm.













Ounsworth, et al.        Expires 9 January 2025                [Page 21]

Internet-Draft             PQ Composite ML-DSA                 July 2024


         +=========================================+=============+
         | Composite Signature AlgorithmID         | Secure Hash |
         +=========================================+=============+
         | id-MLDSA44-RSA2048-PSS-SHA256           | SHA256      |
         +-----------------------------------------+-------------+
         | id-MLDSA44-RSA2048-PKCS15-SHA256        | SHA256      |
         +-----------------------------------------+-------------+
         | id-MLDSA44-Ed25519-SHA512               | SHA512      |
         +-----------------------------------------+-------------+
         | id-MLDSA44-ECDSA-P256-SHA256            | SHA256      |
         +-----------------------------------------+-------------+
         | id-MLDSA44-ECDSA-brainpoolP256r1-SHA256 | SHA256      |
         +-----------------------------------------+-------------+
         | id-MLDSA65-RSA3072-PSS-SHA512           | SHA512      |
         +-----------------------------------------+-------------+
         | id-MLDSA65-RSA3072-PKCS15-SHA512        | SHA512      |
         +-----------------------------------------+-------------+
         | id-MLDSA65-ECDSA-P256-SHA512            | SHA512      |
         +-----------------------------------------+-------------+
         | id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 | SHA512      |
         +-----------------------------------------+-------------+
         | id-MLDSA65-Ed25519-SHA512               | SHA512      |
         +-----------------------------------------+-------------+
         | id-MLDSA87-ECDSA-P384-SHA512            | SHA512      |
         +-----------------------------------------+-------------+
         | id-MLDSA87-ECDSA-brainpoolP384r1-SHA512 | SHA512      |
         +-----------------------------------------+-------------+
         | id-MLDSA87-Ed448-SHA512                 | SHA512      |
         +-----------------------------------------+-------------+

                Table 6: Composite Signature SHA Algorithms

   where:

   *  SHA2 instantiations are defined in [FIPS180].

8.2.  SignedData Conventions

   As specified in CMS [RFC5652], the digital signature is produced from
   the message digest and the signer's private key.  The signature is
   computed over different values depending on whether signed attributes
   are absent or present.

   When signed attributes are absent, the composite signature is
   computed over the content.  When signed attributes are present, a
   hash is computed over the content using the same hash function that
   is used in the composite pre-hash, and then a message-digest
   attribute is constructed to contain the resulting hash value, and



Ounsworth, et al.        Expires 9 January 2025                [Page 22]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   then the result of DER encoding the set of signed attributes, which
   MUST include a content-type attribute and a message-digest attribute,
   and then the composite signature is computed over the DER-encoded
   output.  In summary:

   IF (signed attributes are absent)
      THEN Composite_Sign(content)
   ELSE message-digest attribute = Hash(content);
      Composite_Sign(DER(SignedAttributes))

   When using Composite Signatures, the fields in the SignerInfo are
   used as follows:

   digestAlgorithm: The digestAlgorithm contains the one-way hash
   function used by the CMS signer.

   signatureAlgorithm: The signatureAlgorithm MUST contain one of the
   the Composite Signature algorithm identifiers as specified in Table 6

   signature: The signature field contains the signature value resulting
   from the composite signing operation of the specified
   signatureAlgorithm.

8.3.  Certificate Conventions

   The conventions specified in this section augment RFC 5280 [RFC5280].

   The willingness to accept a composite Signature Algorithm MAY be
   signaled by the use of the SMIMECapabilities Attribute as specified
   in Section 2.5.2. of [RFC8551] or the SMIMECapabilities certificate
   extension as specified in [RFC4262].

   The intended application for the public key MAY be indicated in the
   key usage certificate extension as specified in Section 4.2.1.3 of
   [RFC5280].  If the keyUsage extension is present in a certificate
   that conveys a composite Signature public key, then the key usage
   extension MUST contain only the following value:

   digitalSignature
   nonRepudiation
   keyCertSign
   cRLSign









Ounsworth, et al.        Expires 9 January 2025                [Page 23]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   The keyEncipherment and dataEncipherment values MUST NOT be present.
   That is, a public key intended to be employed only with a composite
   signature algorithm MUST NOT also be employed for data encryption.
   This requirement does not carry any particular security
   consideration; only the convention that signature keys be identified
   with 'digitalSignature','nonRepudiation','keyCertSign' or 'cRLSign'
   key usages.

8.4.  SMIMECapabilities Attribute Conventions

   Section 2.5.2 of [RFC8551] defines the SMIMECapabilities attribute to
   announce a partial list of algorithms that an S/MIME implementation
   can support.  When constructing a CMS signed-data content type
   [RFC5652], a compliant implementation MAY include the
   SMIMECapabilities attribute that announces support for the RSA-KEM
   Algorithm.

   The SMIMECapability SEQUENCE representing a composite signature
   Algorithm MUST include the appropriate object identifier as per
   Table 6 in the capabilityID field.

9.  ASN.1 Module

   <CODE STARTS>


    Composite-Signatures-2023
         { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027)
           algorithm(80) id-composite-signatures-2023 (TBDMOD) }

   DEFINITIONS IMPLICIT TAGS ::= BEGIN

   EXPORTS ALL;

   IMPORTS
     PUBLIC-KEY, SIGNATURE-ALGORITHM, AlgorithmIdentifier{}
       FROM AlgorithmInformation-2009  -- RFC 5912 [X509ASN1]
         { iso(1) identified-organization(3) dod(6) internet(1)
           security(5) mechanisms(5) pkix(7) id-mod(0)
           id-mod-algorithmInformation-02(58) }

     SubjectPublicKeyInfo
       FROM PKIX1Explicit-2009
         { iso(1) identified-organization(3) dod(6) internet(1)
           security(5) mechanisms(5) pkix(7) id-mod(0)
           id-mod-pkix1-explicit-02(51) }

     OneAsymmetricKey



Ounsworth, et al.        Expires 9 January 2025                [Page 24]

Internet-Draft             PQ Composite ML-DSA                 July 2024


       FROM AsymmetricKeyPackageModuleV1
         { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
           pkcs-9(9) smime(16) modules(0)
           id-mod-asymmetricKeyPkgV1(50) }

     RSAPublicKey, ECPoint
       FROM PKIXAlgs-2009
         { iso(1) identified-organization(3) dod(6)
           internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
           id-mod-pkix1-algorithms2008-02(56) }

     sa-rsaSSA-PSS
       FROM PKIX1-PSS-OAEP-Algorithms-2009
          {iso(1) identified-organization(3) dod(6) internet(1) security(5)
          mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-rsa-pkalgs-02(54)}

   ;

   --
   -- Object Identifiers
   --

   -- Defined in ITU-T X.690
   der OBJECT IDENTIFIER ::=
     {joint-iso-itu-t asn1(1) ber-derived(2) distinguished-encoding(1)}




   --
   -- Signature Algorithm
   --


   --
   -- Composite Signature basic structures
   --

   CompositeSignaturePublicKey ::= SEQUENCE SIZE (2) OF BIT STRING

   CompositeSignaturePublicKeyOs ::= OCTET STRING (CONTAINING
                                   CompositeSignaturePublicKey ENCODED BY der)

   CompositeSignaturePublicKeyBs ::= BIT STRING (CONTAINING
                                   CompositeSignaturePublicKey ENCODED BY der)

   CompositeSignaturePrivateKey ::= SEQUENCE SIZE (2) OF OneAsymmetricKey




Ounsworth, et al.        Expires 9 January 2025                [Page 25]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   CompositeSignatureValue ::= SEQUENCE SIZE (2) OF BIT STRING

   -- Composite Signature Value is just a sequence of OCTET STRINGS

   --   CompositeSignaturePair{FirstSignatureValue, SecondSignatureValue} ::=
   --     SEQUENCE {
   --      signaturevalue1 FirstSignatureValue,
   --      signaturevalue2 SecondSignatureValue }

      -- An Explicit Compsite Signature is a set of Signatures which
      -- are composed of OCTET STRINGS
   --   ExplicitCompositeSignatureValue ::= CompositeSignaturePair {
   --       OCTET STRING,OCTET STRING}


   --
   -- Information Object Classes
   --

   pk-CompositeSignature {OBJECT IDENTIFIER:id,
     FirstPublicKeyType,SecondPublicKeyType}
       PUBLIC-KEY ::= {
         IDENTIFIER id
         KEY SEQUENCE {
           firstPublicKey BIT STRING (CONTAINING FirstPublicKeyType),
           secondPublicKey BIT STRING (CONTAINING SecondPublicKeyType)
         }
         PARAMS ARE absent
         CERT-KEY-USAGE { digitalSignature, nonRepudiation, keyCertSign, cRLSign}
       }


   sa-CompositeSignature{OBJECT IDENTIFIER:id,
      PUBLIC-KEY:publicKeyType }
         SIGNATURE-ALGORITHM ::=  {
            IDENTIFIER id
            VALUE CompositeSignatureValue
            PARAMS ARE absent
            PUBLIC-KEYS {publicKeyType}
            SMIME-CAPS { IDENTIFIED BY id }
         }

   -- TODO: OID to be replaced by IANA
   id-MLDSA44-RSA2048-PSS-SHA256 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 1 }

   pk-MLDSA44-RSA2048-PSS-SHA256 PUBLIC-KEY ::=



Ounsworth, et al.        Expires 9 January 2025                [Page 26]

Internet-Draft             PQ Composite ML-DSA                 July 2024


     pk-CompositeSignature{ id-MLDSA44-RSA2048-PSS-SHA256,
     OCTET STRING, RSAPublicKey}

   sa-MLDSA44-RSA2048-PSS-SHA256 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA44-RSA2048-PSS-SHA256,
          pk-MLDSA44-RSA2048-PSS-SHA256 }

   -- TODO: OID to be replaced by IANA
   id-MLDSA44-RSA2048-PKCS15-SHA256 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 2 }

   pk-MLDSA44-RSA2048-PKCS15-SHA256 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA44-RSA2048-PKCS15-SHA256,
     OCTET STRING, RSAPublicKey}

   sa-MLDSA44-RSA2048-PKCS15-SHA256 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA44-RSA2048-PKCS15-SHA256,
          pk-MLDSA44-RSA2048-PKCS15-SHA256 }


   -- TODO: OID to be replaced by IANA
   id-MLDSA44-Ed25519-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 3 }

   pk-MLDSA44-Ed25519-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA44-Ed25519-SHA512,
     OCTET STRING, ECPoint}

   sa-MLDSA44-Ed25519-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA44-Ed25519-SHA512,
          pk-MLDSA44-Ed25519-SHA512 }


   -- TODO: OID to be replaced by IANA
   id-MLDSA44-ECDSA-P256-SHA256 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 4 }

   pk-MLDSA44-ECDSA-P256-SHA256 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA44-ECDSA-P256-SHA256,
     OCTET STRING, ECPoint}

   sa-MLDSA44-ECDSA-P256-SHA256 SIGNATURE-ALGORITHM ::=



Ounsworth, et al.        Expires 9 January 2025                [Page 27]

Internet-Draft             PQ Composite ML-DSA                 July 2024


       sa-CompositeSignature{
          id-MLDSA44-ECDSA-P256-SHA256,
          pk-MLDSA44-ECDSA-P256-SHA256 }


   -- TODO: OID to be replaced by IANA
   id-MLDSA44-ECDSA-brainpoolP256r1-SHA256 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 5 }

   pk-MLDSA44-ECDSA-brainpoolP256r1-SHA256 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA44-ECDSA-brainpoolP256r1-SHA256,
     OCTET STRING, ECPoint}

   sa-MLDSA44-ECDSA-brainpoolP256r1-SHA256 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA44-ECDSA-brainpoolP256r1-SHA256,
          pk-MLDSA44-ECDSA-brainpoolP256r1-SHA256 }


   -- TODO: OID to be replaced by IANA
   id-MLDSA65-RSA3072-PSS-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 6 }

   pk-MLDSA65-RSA3072-PSS-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA65-RSA3072-PSS-SHA512,
     OCTET STRING, RSAPublicKey}

   sa-MLDSA65-RSA3072-PSS-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA65-RSA3072-PSS-SHA512,
          pk-MLDSA65-RSA3072-PSS-SHA512 }


   -- TODO: OID to be replaced by IANA
   id-MLDSA65-RSA3072-PKCS15-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 7 }

   pk-MLDSA65-RSA3072-PKCS15-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA65-RSA3072-PKCS15-SHA512,
     OCTET STRING, RSAPublicKey}

   sa-MLDSA65-RSA3072-PKCS15-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA65-RSA3072-PKCS15-SHA512,
          pk-MLDSA65-RSA3072-PKCS15-SHA512 }



Ounsworth, et al.        Expires 9 January 2025                [Page 28]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   -- TODO: OID to be replaced by IANA
   id-MLDSA65-ECDSA-P256-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 8 }

   pk-MLDSA65-ECDSA-P256-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA65-ECDSA-P256-SHA512,
     OCTET STRING, ECPoint}

   sa-MLDSA65-ECDSA-P256-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA65-ECDSA-P256-SHA512,
          pk-MLDSA65-ECDSA-P256-SHA512 }


   -- TODO: OID to be replaced by IANA
   id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 9 }

   pk-id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA65-ECDSA-brainpoolP256r1-SHA512,
     OCTET STRING, ECPoint}

   sa-id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA65-ECDSA-brainpoolP256r1-SHA512,
          pk-id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 }


   -- TODO: OID to be replaced by IANA
   id-MLDSA65-Ed25519-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 10 }

   pk-MLDSA65-Ed25519-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA65-Ed25519-SHA512,
     OCTET STRING, ECPoint}

   sa-MLDSA65-Ed25519-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA65-Ed25519-SHA512,
          pk-MLDSA65-Ed25519-SHA512 }


   -- TODO: OID to be replaced by IANA
   id-MLDSA87-ECDSA-P384-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)



Ounsworth, et al.        Expires 9 January 2025                [Page 29]

Internet-Draft             PQ Composite ML-DSA                 July 2024


      entrust(114027) algorithm(80) composite(8) signature(1) 11 }

   pk-MLDSA87-ECDSA-P384-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA87-ECDSA-P384-SHA512,
     OCTET STRING, ECPoint}

   sa-MLDSA87-ECDSA-P384-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA87-ECDSA-P384-SHA512,
          pk-MLDSA87-ECDSA-P384-SHA512 }


   -- TODO: OID to be replaced by IANA
   id-MLDSA87-ECDSA-brainpoolP384r1-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 12 }

   pk-MLDSA87-ECDSA-brainpoolP384r1-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA87-ECDSA-brainpoolP384r1-SHA512,
     OCTET STRING, ECPoint}

   sa-MLDSA87-ECDSA-brainpoolP384r1-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA87-ECDSA-brainpoolP384r1-SHA512,
          pk-MLDSA87-ECDSA-brainpoolP384r1-SHA512 }


   -- TODO: OID to be replaced by IANA
   id-MLDSA87-Ed448-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 13 }

   pk-MLDSA87-Ed448-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA87-Ed448-SHA512,
     OCTET STRING, ECPoint}

   sa-MLDSA87-Ed448-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA87-Ed448-SHA512,
          pk-MLDSA87-Ed448-SHA512 }

   END

   <CODE ENDS>







Ounsworth, et al.        Expires 9 January 2025                [Page 30]

Internet-Draft             PQ Composite ML-DSA                 July 2024


10.  IANA Considerations

   IANA is requested to allocate a value from the "SMI Security for PKIX
   Module Identifier" registry [RFC7299] for the included ASN.1 module,
   and allocate values from "SMI Security for PKIX Algorithms" to
   identify the fourteen Algorithms defined within.

10.1.  Object Identifier Allocations

   EDNOTE to IANA: OIDs will need to be replaced in both the ASN.1
   module and in Table 2.

10.1.1.  Module Registration - SMI Security for PKIX Module Identifier

   *  Decimal: IANA Assigned - *Replace TBDMOD*

   *  Description: Composite-Signatures-2023 - id-mod-composite-
      signatures

   *  References: This Document

10.1.2.  Object Identifier Registrations - SMI Security for PKIX
         Algorithms

   *  id-MLDSA44-RSA2048-PSS-SHA256

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA44-RSA2048-PSS-SHA256

   *  References: This Document

   *  id-MLDSA44-RSA2048-PKCS15-SHA256

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA44-RSA2048-PKCS15-SHA256

   *  References: This Document

   *  id-MLDSA44-Ed25519-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA44-Ed25519-SHA512

   *  References: This Document




Ounsworth, et al.        Expires 9 January 2025                [Page 31]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   *  id-MLDSA44-ECDSA-P256-SHA256

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA44-ECDSA-P256-SHA256

   *  References: This Document

   *  id-MLDSA44-ECDSA-brainpoolP256r1-SHA256

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA44-ECDSA-brainpoolP256r1-SHA256

   *  References: This Document

   *  id-MLDSA65-RSA3072-PSS-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA65-RSA3072-PSS-SHA512

   *  References: This Document

   *  id-MLDSA65-RSA3072-PKCS15-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA65-RSA3072-PKCS15-SHA512

   *  References: This Document

   *  id-MLDSA65-ECDSA-P256-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA65-ECDSA-P256-SHA512

   *  References: This Document

   *  id-MLDSA65-ECDSA-brainpoolP256r1-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA65-ECDSA-brainpoolP256r1-SHA512

   *  References: This Document




Ounsworth, et al.        Expires 9 January 2025                [Page 32]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   *  id-MLDSA65-Ed25519-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA65-Ed25519-SHA512

   *  References: This Document

   *  id-MLDSA87-ECDSA-P384-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA87-ECDSA-P384-SHA512

   *  References: This Document

   *  id-MLDSA87-ECDSA-brainpoolP384r1-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA87-ECDSA-brainpoolP384r1-SHA512

   *  References: This Document

   *  id-MLDSA87-Ed448-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA87-Ed448-SHA512

   *  References: This Document

11.  Security Considerations

11.1.  Public Key Algorithm Selection Criteria

   The composite algorithm combinations defined in this document were
   chosen according to the following guidelines:

   1.  A single RSA combination is provided at a key size of 3072 bits,
       matched with NIST PQC Level 3 algorithms.










Ounsworth, et al.        Expires 9 January 2025                [Page 33]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   2.  Elliptic curve algorithms are provided with combinations on each
       of the NIST [RFC6090], Brainpool [RFC5639], and Edwards [RFC7748]
       curves.  NIST PQC Levels 1 - 3 algorithms are matched with
       256-bit curves, while NIST levels 4 - 5 are matched with 384-bit
       elliptic curves.  This provides a balance between matching
       classical security levels of post-quantum and traditional
       algorithms, and also selecting elliptic curves which already have
       wide adoption.

   3.  NIST level 1 candidates are provided, matched with 256-bit
       elliptic curves, intended for constrained use cases.

   If other combinations are needed, a separate specification should be
   submitted to the IETF LAMPS working group.  To ease implementation,
   these specifications are encouraged to follow the construction
   pattern of the algorithms specified in this document.

   The composite structures defined in this specification allow only for
   pairs of algorithms.  This also does not preclude future
   specification from extending these structures to define combinations
   with three or more components.

11.2.  PreHashing Algorithm Selection Criteria

   As noted in the composite signature generation process and composite
   signature verification process, the Message should be pre-hashed into
   M' with the digest algorithm specified in the composite signature
   algorithm identifier.  The selection of the digest algorithm was
   chosen with the following criteria:

   1.  For composites paired with RSA or ECDSA, the hashing algorithm
       SHA256 or SHA512 is used as part of the RSA or ECDSA signature
       algorithm and is therefore also used as the composite prehashing
       algorithm.

   2.  For ML-DSA signing a digest of the message is allowed as long as
       the hash function provides at least y bits of classical security
       strength against both collision and second preimage attacks.  For
       ML-DSA-44 y is 128 bits, for ML-DSA-65 y is 192 bits and for ML-
       DSA-87 y is 256 bits.  Therefore SHA256 is paired with RSA and
       ECDSA with ML-DSA-44 and SHA512 is paired with RSA and ECDSA with
       ML-DSA-65 and ML-DSA-87 to match the appropriate security
       strength.

   3.  Ed25519 [RFC8032] uses SHA512 internally, therefore SHA512 is
       used to pre-hash the message when Ed25519 is a component
       algorithm.




Ounsworth, et al.        Expires 9 January 2025                [Page 34]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   4.  Ed448 [RFC8032] uses SHAKE256 internally, but to reduce the set
       of prehashing algorihtms, SHA512 was selected to pre-hash the
       message when Ed448 is a component algorithm.

11.3.  Policy for Deprecated and Acceptable Algorithms

   Traditionally, a public key, certificate, or signature contains a
   single cryptographic algorithm.  If and when an algorithm becomes
   deprecated (for example, RSA-512, or SHA1), then clients performing
   signatures or verifications should be updated to adhere to
   appropriate policies.

   In the composite model this is less obvious since implementers may
   decide that certain cryptographic algorithms have complementary
   security properties and are acceptable in combination even though one
   or both algorithms are deprecated for individual use.  As such, a
   single composite public key or certificate may contain a mixture of
   deprecated and non-deprecated algorithms.

   Since composite algorithms are registered independently of their
   component algorithms, their deprecation can be handled independently
   from that of their component algorithms.  For example a cryptographic
   policy might continue to allow id-MLDSA65-ECDSA-P256-SHA512 even
   after ECDSA-P256 is deprecated.

   When considering stripping attacks, one need consider the case where
   an attacker has fully compromised one of the component algorithms to
   the point that they can produce forged signatures that appear valid
   under one of the component public keys, and thus fool a victim
   verifier into accepting a forged signature.  The protection against
   this attack relies on the victim verifier trusting the pair of public
   keys as a single composite key, and not trusting the individual
   component keys by themselves.

   Specifically, in order to achieve this non-separability property,
   this specification makes two assumptions about how the verifier will
   establish trust in a composite public key:

   1.  This specification assumes that all of the component keys within
       a composite key are freshly generated for the composite; ie a
       given public key MUST NOT appear as a component within a
       composite key and also within single-algorithm constructions.









Ounsworth, et al.        Expires 9 January 2025                [Page 35]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   2.  This specification assumes that composite public keys will be
       bound in a structure that contains a signature over the public
       key (for example, an X.509 Certificate [RFC5280]), which is
       chained back to a trust anchor, and where that signature
       algorithm is at least as strong as the composite public key that
       it is protecting.

   There are mechanisms within Internet PKI where trusted public keys do
   not appear within signed structures -- such as the Trust Anchor
   format defined in [RFC5914].  In such cases, it is the responsibility
   of implementers to ensure that trusted composite keys are distributed
   in a way that is tamper-resistant and does not allow the component
   keys to be trusted independently.

12.  References

12.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC2986]  Nystrom, M. and B. Kaliski, "PKCS #10: Certification
              Request Syntax Specification Version 1.7", RFC 2986,
              DOI 10.17487/RFC2986, November 2000,
              <https://www.rfc-editor.org/info/rfc2986>.

   [RFC4210]  Adams, C., Farrell, S., Kause, T., and T. Mononen,
              "Internet X.509 Public Key Infrastructure Certificate
              Management Protocol (CMP)", RFC 4210,
              DOI 10.17487/RFC4210, September 2005,
              <https://www.rfc-editor.org/info/rfc4210>.

   [RFC4211]  Schaad, J., "Internet X.509 Public Key Infrastructure
              Certificate Request Message Format (CRMF)", RFC 4211,
              DOI 10.17487/RFC4211, September 2005,
              <https://www.rfc-editor.org/info/rfc4211>.

   [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
              <https://www.rfc-editor.org/info/rfc5280>.







Ounsworth, et al.        Expires 9 January 2025                [Page 36]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   [RFC5480]  Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
              "Elliptic Curve Cryptography Subject Public Key
              Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,
              <https://www.rfc-editor.org/info/rfc5480>.

   [RFC5639]  Lochter, M. and J. Merkle, "Elliptic Curve Cryptography
              (ECC) Brainpool Standard Curves and Curve Generation",
              RFC 5639, DOI 10.17487/RFC5639, March 2010,
              <https://www.rfc-editor.org/info/rfc5639>.

   [RFC5652]  Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
              RFC 5652, DOI 10.17487/RFC5652, September 2009,
              <https://www.rfc-editor.org/info/rfc5652>.

   [RFC5758]  Dang, Q., Santesson, S., Moriarty, K., Brown, D., and T.
              Polk, "Internet X.509 Public Key Infrastructure:
              Additional Algorithms and Identifiers for DSA and ECDSA",
              RFC 5758, DOI 10.17487/RFC5758, January 2010,
              <https://www.rfc-editor.org/info/rfc5758>.

   [RFC5958]  Turner, S., "Asymmetric Key Packages", RFC 5958,
              DOI 10.17487/RFC5958, August 2010,
              <https://www.rfc-editor.org/info/rfc5958>.

   [RFC6090]  McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
              Curve Cryptography Algorithms", RFC 6090,
              DOI 10.17487/RFC6090, February 2011,
              <https://www.rfc-editor.org/info/rfc6090>.

   [RFC6234]  Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
              (SHA and SHA-based HMAC and HKDF)", RFC 6234,
              DOI 10.17487/RFC6234, May 2011,
              <https://www.rfc-editor.org/info/rfc6234>.

   [RFC7748]  Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
              for Security", RFC 7748, DOI 10.17487/RFC7748, January
              2016, <https://www.rfc-editor.org/info/rfc7748>.

   [RFC8032]  Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
              Signature Algorithm (EdDSA)", RFC 8032,
              DOI 10.17487/RFC8032, January 2017,
              <https://www.rfc-editor.org/info/rfc8032>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.





Ounsworth, et al.        Expires 9 January 2025                [Page 37]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   [RFC8410]  Josefsson, S. and J. Schaad, "Algorithm Identifiers for
              Ed25519, Ed448, X25519, and X448 for Use in the Internet
              X.509 Public Key Infrastructure", RFC 8410,
              DOI 10.17487/RFC8410, August 2018,
              <https://www.rfc-editor.org/info/rfc8410>.

   [RFC8411]  Schaad, J. and R. Andrews, "IANA Registration for the
              Cryptographic Algorithm Object Identifier Range",
              RFC 8411, DOI 10.17487/RFC8411, August 2018,
              <https://www.rfc-editor.org/info/rfc8411>.

   [X.690]    ITU-T, "Information technology - ASN.1 encoding Rules:
              Specification of Basic Encoding Rules (BER), Canonical
              Encoding Rules (CER) and Distinguished Encoding Rules
              (DER)", ISO/IEC 8825-1:2015, November 2015.

12.2.  Informative References

   [ANSSI2024]
              French Cybersecurity Agency (ANSSI), Federal Office for
              Information Security (BSI), Netherlands National
              Communications Security Agency (NLNCSA), and Swedish
              National Communications Security Authority, Swedish Armed
              Forces, "Position Paper on Quantum Key Distribution",
              n.d., <https://cyber.gouv.fr/sites/default/files/document/
              Quantum_Key_Distribution_Position_Paper.pdf>.

   [Bindel2017]
              Bindel, N., Herath, U., McKague, M., and D. Stebila,
              "Transitioning to a quantum-resistant public key
              infrastructure", 2017, <https://link.springer.com/
              chapter/10.1007/978-3-319-59879-6_22>.

   [BSI2021]  Federal Office for Information Security (BSI), "Quantum-
              safe cryptography - fundamentals, current developments and
              recommendations", October 2021,
              <https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/
              Publications/Brochure/quantum-safe-cryptography.pdf>.

   [I-D.becker-guthrie-noncomposite-hybrid-auth]
              Becker, A., Guthrie, R., and M. J. Jenkins, "Non-Composite
              Hybrid Authentication in PKIX and Applications to Internet
              Protocols", Work in Progress, Internet-Draft, draft-
              becker-guthrie-noncomposite-hybrid-auth-00, 22 March 2022,
              <https://datatracker.ietf.org/doc/html/draft-becker-
              guthrie-noncomposite-hybrid-auth-00>.





Ounsworth, et al.        Expires 9 January 2025                [Page 38]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   [I-D.driscoll-pqt-hybrid-terminology]
              D, F., "Terminology for Post-Quantum Traditional Hybrid
              Schemes", Work in Progress, Internet-Draft, draft-
              driscoll-pqt-hybrid-terminology-01, 20 October 2022,
              <https://datatracker.ietf.org/doc/html/draft-driscoll-pqt-
              hybrid-terminology-01>.

   [I-D.guthrie-ipsecme-ikev2-hybrid-auth]
              Guthrie, R., "Hybrid Non-Composite Authentication in
              IKEv2", Work in Progress, Internet-Draft, draft-guthrie-
              ipsecme-ikev2-hybrid-auth-00, 25 March 2022,
              <https://datatracker.ietf.org/doc/html/draft-guthrie-
              ipsecme-ikev2-hybrid-auth-00>.

   [I-D.hale-pquip-hybrid-signature-spectrums]
              Bindel, N., Hale, B., Connolly, D., and F. D, "Hybrid
              signature spectrums", Work in Progress, Internet-Draft,
              draft-hale-pquip-hybrid-signature-spectrums-01, 6 November
              2023, <https://datatracker.ietf.org/doc/html/draft-hale-
              pquip-hybrid-signature-spectrums-01>.

   [I-D.ietf-lamps-dilithium-certificates]
              Massimo, J., Kampanakis, P., Turner, S., and B.
              Westerbaan, "Internet X.509 Public Key Infrastructure:
              Algorithm Identifiers for Dilithium", Work in Progress,
              Internet-Draft, draft-ietf-lamps-dilithium-certificates-
              01, 6 February 2023,
              <https://datatracker.ietf.org/doc/html/draft-ietf-lamps-
              dilithium-certificates-01>.

   [I-D.massimo-lamps-pq-sig-certificates]
              Massimo, J., Kampanakis, P., Turner, S., and B.
              Westerbaan, "Algorithms and Identifiers for Post-Quantum
              Algorithms", Work in Progress, Internet-Draft, draft-
              massimo-lamps-pq-sig-certificates-00, 8 July 2022,
              <https://datatracker.ietf.org/doc/html/draft-massimo-
              lamps-pq-sig-certificates-00>.

   [I-D.ounsworth-pq-composite-kem]
              Ounsworth, M. and J. Gray, "Composite KEM For Use In
              Internet PKI", Work in Progress, Internet-Draft, draft-
              ounsworth-pq-composite-kem-01, 13 March 2023,
              <https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-
              composite-kem-01>.

   [I-D.pala-klaussner-composite-kofn]
              Pala, M. and J. Klaußner, "K-threshold Composite
              Signatures for the Internet PKI", Work in Progress,



Ounsworth, et al.        Expires 9 January 2025                [Page 39]

Internet-Draft             PQ Composite ML-DSA                 July 2024


              Internet-Draft, draft-pala-klaussner-composite-kofn-00, 15
              November 2022, <https://datatracker.ietf.org/doc/html/
              draft-pala-klaussner-composite-kofn-00>.

   [I-D.vaira-pquip-pqc-use-cases]
              Vaira, A., Brockhaus, H., Railean, A., Gray, J., and M.
              Ounsworth, "Post-quantum cryptography use cases", Work in
              Progress, Internet-Draft, draft-vaira-pquip-pqc-use-cases-
              00, 23 October 2023,
              <https://datatracker.ietf.org/doc/html/draft-vaira-pquip-
              pqc-use-cases-00>.

   [RFC3279]  Bassham, L., Polk, W., and R. Housley, "Algorithms and
              Identifiers for the Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 3279, DOI 10.17487/RFC3279, April
              2002, <https://www.rfc-editor.org/info/rfc3279>.

   [RFC7292]  Moriarty, K., Ed., Nystrom, M., Parkinson, S., Rusch, A.,
              and M. Scott, "PKCS #12: Personal Information Exchange
              Syntax v1.1", RFC 7292, DOI 10.17487/RFC7292, July 2014,
              <https://www.rfc-editor.org/info/rfc7292>.

   [RFC7296]  Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
              Kivinen, "Internet Key Exchange Protocol Version 2
              (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
              2014, <https://www.rfc-editor.org/info/rfc7296>.

   [RFC7299]  Housley, R., "Object Identifier Registry for the PKIX
              Working Group", RFC 7299, DOI 10.17487/RFC7299, July 2014,
              <https://www.rfc-editor.org/info/rfc7299>.

   [RFC8017]  Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
              "PKCS #1: RSA Cryptography Specifications Version 2.2",
              RFC 8017, DOI 10.17487/RFC8017, November 2016,
              <https://www.rfc-editor.org/info/rfc8017>.

   [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.

   [RFC8551]  Schaad, J., Ramsdell, B., and S. Turner, "Secure/
              Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
              Message Specification", RFC 8551, DOI 10.17487/RFC8551,
              April 2019, <https://www.rfc-editor.org/info/rfc8551>.






Ounsworth, et al.        Expires 9 January 2025                [Page 40]

Internet-Draft             PQ Composite ML-DSA                 July 2024


Appendix A.  Component Algorithm Reference

   This section provides references to the full specification of the
   algorithms used in the composite constructions.

   +=======================+========================+=======================================+
   |Component Signature    |OID                     |Specification                          |
   |Algorithm ID           |                        |                                       |
   +=======================+========================+=======================================+
   |id-ML-DSA-44           |1.3.6.1.4.1.2.267.12.4.4|_ML-DSA_:                              |
   |                       |                        |[I-D.ietf-lamps-dilithium-certificates]|
   |                       |                        |and [FIPS.204-ipd]                     |
   +-----------------------+------------------------+---------------------------------------+
   |id-ML-DSA-65           |1.3.6.1.4.1.2.267.12.6.5|_ML-DSA_:                              |
   |                       |                        |[I-D.ietf-lamps-dilithium-certificates]|
   |                       |                        |and [FIPS.204-ipd]                     |
   +-----------------------+------------------------+---------------------------------------+
   |id-ML-DSA-87           |1.3.6.1.4.1.2.267.12.8.7|_ML-DSA_:                              |
   |                       |                        |[I-D.ietf-lamps-dilithium-certificates]|
   |                       |                        |and [FIPS.204-ipd]                     |
   +-----------------------+------------------------+---------------------------------------+
   |id-Ed25519             |iso(1) identified-      |_Ed25519 / Ed448_: [RFC8410]           |
   |                       |organization(3)         |                                       |
   |                       |thawte(101) 112         |                                       |
   +-----------------------+------------------------+---------------------------------------+
   |id-Ed448               |iso(1) identified-      |_Ed25519 / Ed448_: [RFC8410]           |
   |                       |organization(3)         |                                       |
   |                       |thawte(101) id-         |                                       |
   |                       |Ed448(113)              |                                       |
   +-----------------------+------------------------+---------------------------------------+
   |ecdsa-with-SHA256      |iso(1) member-body(2)   |_ECDSA_: [RFC5758]                     |
   |                       |us(840) ansi-           |                                       |
   |                       |X9-62(10045)            |                                       |
   |                       |signatures(4) ecdsa-    |                                       |
   |                       |with-SHA2(3) 2          |                                       |
   +-----------------------+------------------------+---------------------------------------+
   |ecdsa-with-SHA512      |iso(1) member-body(2)   |_ECDSA_: [RFC5758]                     |
   |                       |us(840) ansi-           |                                       |
   |                       |X9-62(10045)            |                                       |
   |                       |signatures(4) ecdsa-    |                                       |
   |                       |with-SHA2(3) 4          |                                       |
   +-----------------------+------------------------+---------------------------------------+
   |sha256WithRSAEncryption|iso(1) member-body(2)   |_RSAES-PKCS-v1_5_: [RFC8017]           |
   |                       |us(840) rsadsi(113549)  |                                       |
   |                       |pkcs(1) pkcs-1(1) 11    |                                       |
   +-----------------------+------------------------+---------------------------------------+
   |sha512WithRSAEncryption|iso(1) member-body(2)   |_RSAES-PKCS-v1_5_: [RFC8017]           |
   |                       |us(840) rsadsi(113549)  |                                       |



Ounsworth, et al.        Expires 9 January 2025                [Page 41]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   |                       |pkcs(1) pkcs-1(1) 13    |                                       |
   +-----------------------+------------------------+---------------------------------------+
   |id-RSASA-PSS           |iso(1) member-body(2)   |_RSASSA-PSS_: [RFC8017]                |
   |                       |us(840) rsadsi(113549)  |                                       |
   |                       |pkcs(1) pkcs-1(1) 10    |                                       |
   +-----------------------+------------------------+---------------------------------------+

         Table 7: Component Signature Algorithms used in Composite
                               Constructions

   +=================+=================================+===============+
   | Elliptic        | OID                             | Specification |
   | CurveID         |                                 |               |
   +=================+=================================+===============+
   | secp256r1       | iso(1) member-body(2)           | [RFC6090]     |
   |                 | us(840) ansi-x962(10045)        |               |
   |                 | curves(3) prime(1) 7            |               |
   +-----------------+---------------------------------+---------------+
   | secp384r1       | iso(1) identified-              | [RFC6090]     |
   |                 | organization(3)                 |               |
   |                 | certicom(132) curve(0) 34       |               |
   +-----------------+---------------------------------+---------------+
   | brainpoolP256r1 | iso(1) identified-              | [RFC5639]     |
   |                 | organization(3)                 |               |
   |                 | teletrust(36) algorithm(3)      |               |
   |                 | signatureAlgorithm(3)           |               |
   |                 | ecSign(2)                       |               |
   |                 | ecStdCurvesAndGeneration(8)     |               |
   |                 | ellipticCurve(1)                |               |
   |                 | versionOne(1) 7                 |               |
   +-----------------+---------------------------------+---------------+
   | brainpoolP384r1 | iso(1) identified-              | [RFC5639]     |
   |                 | organization(3)                 |               |
   |                 | teletrust(36) algorithm(3)      |               |
   |                 | signatureAlgorithm(3)           |               |
   |                 | ecSign(2)                       |               |
   |                 | ecStdCurvesAndGeneration(8)     |               |
   |                 | ellipticCurve(1)                |               |
   |                 | versionOne(1) 11                |               |
   +-----------------+---------------------------------+---------------+

          Table 8: Elliptic Curves used in Composite Constructions









Ounsworth, et al.        Expires 9 January 2025                [Page 42]

Internet-Draft             PQ Composite ML-DSA                 July 2024


      +===========+=================================+===============+
      | HashID    | OID                             | Specification |
      +===========+=================================+===============+
      | id-sha256 | joint-iso-itu-t(2) country(16)  | [RFC6234]     |
      |           | us(840) organization(1)         |               |
      |           | gov(101) csor(3)                |               |
      |           | nistAlgorithms(4) hashAlgs(2) 1 |               |
      +-----------+---------------------------------+---------------+
      | id-sha512 | joint-iso-itu-t(2) country(16)  | [RFC6234]     |
      |           | us(840) organization(1)         |               |
      |           | gov(101) csor(3)                |               |
      |           | nistAlgorithms(4) hashAlgs(2) 3 |               |
      +-----------+---------------------------------+---------------+

          Table 9: Hash algorithms used in Composite Constructions

Appendix B.  Samples

B.1.  Explicit Composite Signature Examples

B.1.1.  MLDSA44-ECDSA-P256-SHA256 Public Key






























Ounsworth, et al.        Expires 9 January 2025                [Page 43]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   -----BEGIN PUBLIC KEY-----
   MIIFgTANBgtghkgBhvprUAgBBAOCBW4AMIIFaQOCBSEAJaSzbEOXCT27FgXshv87
   2HLTgePmYCJCH2OVUi/PB9YTyBXXnw+smoXT4w0pcq3WPs7qQXz6GKj7R0mFfTjp
   Rd6uH3hgdS5cbg+PwMWsRKigE6mWFpMwrliS8CfR2yYgjhRav7wGa4ja7RdmZoLz
   T8UBN2Yg6P/KceWA1gX6rdVUalrUvmcfR64ry06IfotXXNFwQc3vI6s7khHSUZX5
   Rsw55RK3E0ElNpZxfFHv17d2xwFkGRAYqJao+qo37WtfG6Ynx4cqQyLJzlRn++5R
   G6K1nCwqhErpk4vDR2uHIwAPiW0StX9ZbBjO2smRTIuWS2WhmhZwJkDqSHmCiRI2
   tPsxCtLpM8t2IhTVy/ObAdQGPDngTNIPH8kuoRrBhWGIiWJMlo8LkImCRt5m/8Di
   aL8C2BQNL+BWBBcak/JZrLkKZOZM7pFwWruHVEd0608XerfiVO3ypqAxImJ2xcdD
   kLys4jDlEMsC3oz4RQGXahj2Pr8Jxu8i0TIDDdV5MZw9wId/m+0/vSD8BOAu09Wu
   V6ppUWkDZLHlzf12zx3ZzBF/CMqZNsxMdTFNbu2qQ2/CZMlEvZ9f0gxn6qNf8NHC
   UqdeRr7p9z8PuGHErLHqCvQMrzia71cD4URV//SR8EUQkoo9imtw3XT2uKGUIjT/
   dDyqWl8BlAZ64dUp9EWmHwG1cyKBcu2dtD0d4BMol1g4TOF7u/3hHcgOoiR+ON/3
   7MoxkX9mHt6tP7hkVWy0Mb3Sjej12DG75D9z8gAzHyQhOs3suNliCzCUmUVYm5Mv
   WdySiuShm6yu+9Ah+GqvESuNr/h6s1gZGbdCe9llGdFPniilhL5J9oDgYMp+wi2I
   EeOugOFoaY1e2OI1OPjBpg1071ko9B3CGD+0PkPvKYmMGs0HTnzFWCLPj5dG2kg7
   PEltarKvLVTIxrbjw03l3SXmqpNPU8SqFJ7hB3OpFJgjqL95IRTa68UM8aaUKLMa
   Qjjx08+e13P3wwY3niCR5U751fus4ArGLN2JgfPB7bPSdz043PIvxsCYZxUQXSW3
   xWhWQqaHJLml19obvnf/tEXQZLheAr7hOEb/UTNUIBj/A6LfB0Gs012B1aXfne4W
   9K/OFXc9p0C7aWIfjfMrA/idOrd1Eoo2NGLid+wp8aXyDZkCf5OUretEFHqQcQ2J
   znh8R4mh2Tf7hT8+Gj5Su6bZggHi9iIJZ1G7i0j4Wm3g6DJAXF6KbChMayKRunDp
   k6Nm5iOeTmT+Vi4OJncuI6HezZMzO2s+2iY33uDL7tFR8fVn7dQiF78c1aNhWjfm
   fIsLNQdZxt6orvnwSrZpdVhOtAu+vYVaEAShdHgfzvPSDHIjgyxs6mGdk0uDsGpP
   f5d3e9KV40rXir2OXaYMOq2KTkLb6KHHxZayLG0D9/qSBOnSE/aXNhh1cHtKeYAe
   jjXmfzsmgNELPNxFRrx8pEHG1Se0GJNJVZE9u6B2r9f09TgTxgPX/6XpBNUrlz21
   fsIvNpRL48cwLHOCgYP/SAgE3gzRC6G5NEE19wQZHsFNGeUeGvrvUQgTyT1YwLx+
   Abvp57bVjgLWli185/K1a8BmJ204RHfDhSFe7sVAIoI2pUcz7ydb178DCAvupP20
   CxUIkgOk3C+cgUzTwsFU4iiix282ZBa8/nTUnH9r3IDJQJwdWtMCnByCc43UeVSh
   WV3isRF+ANl6lSevNj0uzGE07a5gPahctBWMmevh6qFcv5XucwNRe7en96o7CgK+
   5QNCAAReie6V/SXhsV0+AAEPt/7UjJqzbrZU1ZHKBLCDbX1cv1Zkpy+SabE2Pfpd
   K7SzfBpZw0txE+bjIUT4j3zjgIDa
   -----END PUBLIC KEY-----

B.1.2.  MLDSA44-ECDSA-P256 Private Key

   -----BEGIN PRIVATE KEY-----
   MIIP6gIBADANBgtghkgBhvprUAgBBASCD9Qwgg/QMIIPNgIBADANBgsrBgEEAQKC
   CwwEBASCDyAlpLNsQ5cJPbsWBeyG/zvYctOB4+ZgIkIfY5VSL88H1oyY3xD+KvF2
   4bnFPT7nM4+8rPjsCuuk2PyUr7vzEHf++3ovDEFUsHo88ez4zfzBeW+Aho6yC4Gf
   H8BFsgVYv0HmRUPUEmVhrJUKt8VwHbOVyak7a4JWl6MWpwxnRYqso1rCcWKWZKQC
   bZIQQhGIKaIyZQSVRSI4bdBAShuBaQPGkBwUDgM3QQgGbhHDSBqzLQk4MooWSUk0
   Zhk4JCAgUhg0ZVkkECOYTYBIMRQGjFICSaMiIYAAShMTJVAwbaFCakg0QcFCZolC
   CmBEUQm5cQESASEQDCSgRGAyhMQGDWOAKRkZZESiAOI0KWAWbaIkbBoUJWOiiQk5
   hhBCadqGhZEYglhIQACkMJo4kmEwSIDGBYtELcCoAVuGJMPAhCOFDRE1RCSGLAq0
   AAA1Cgk3CgjAZYEUKovCaBs5hti2CZO0DePECBvHZASnMdmmURsxRFA4YRxGUOSy
   EeEyUIA2isM0LRwJAgEAjGHGLRySJYjAgROBYQO1UUSCSRjACdg0ZAGgABQHjAkm
   juOUQBpEgNy0jOPGIAzETdyIhZMIMVRCZgyyRUAgLQQwcchIbFIWRswgIQHAJQMV
   RJgQJFqERFuiJQqjBIsChVpEMEsCKFqwCFgkciRHIcwCICKUAEgWScTESdgiYWQy



Ounsworth, et al.        Expires 9 January 2025                [Page 44]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   MtCgIISkARMZRAg3ieMGKlBITMM2iosCgiQ2MIKiKeI2TFhGaQKWAckEJmE4hhII
   bSEyjQuECMlASBTBJFlIahIHaRhAAeQoMRQSDhQCcsiwYYg4BiETCAwiMRwwEcyU
   jAoBDgLDDJmCjZOwRECIkVQ0bdoiKgwmUlSoSFsASsOoIQNHAdSwLFG4aSMIChlB
   YBmmUEK0RIA4LiEmIAREJJEkIlpCJAnJDBS5bZQ2QAI2juHIKMkyihOnARlDiSQG
   KEJAkgijEQwZRkgCJqFIiqIWRRo5JNqCTQoXhNIihko2YCICRQvIhQuALVmIhUAQ
   TlRCasFAJJAQISG0ZQgTYgk0bEIiKZG0BYikBSEUYovCCBgZCgTJJNwoSFwIaMEC
   JBm0cUQQSMpALAKwDKEkZSOCIFySQWAAYAGYLcw4IVPIMQiYaBoijduAMVrAjCQl
   hdowJhpHKCCIKEMmbeEghRKiRRmgZAHAZRRDMclGICGEZKO0ReM2EFgwFoabywZ8
   xF2nuUHyMuPJG+EpYRxQCAJaxByDrIGke83F1KvEG5cCOPOXhi2O7cC4sxSopILK
   I5bRDIFdHk15n9mCLq6w/K72nQSX4usU4izDewR/JZQZV6AR9D/yBSNyAfr50Z7U
   pMrfq7NZp+KstrHxs0SBDm5XNBXBaIpAwIHKkL/epe+2q2FI4Dcy1rZAQMVX80UI
   SmhaL1CRud4Yi1pEnPf0taOiaE8hjgQwoZ1DUl6HviFsJwaa2+y3RAjsGZuIVRTC
   3nirZrYPw+dWVFWvMqvjh97SYgC7eTn2R4Xu3f/2GVaiaXgCEBhHTY5Ar8Fz6E3L
   MVi9hWMMF6Mj5vXcdUhwA2aeXGjnqPdtA/jmZUXQlK3NmxS4v2ga0z7wFRiv2nNF
   bnEGP6T/8oTcd78NrWobcQHfV3uWbbSwOhPrNgBWzuMl/FG9nMLRcQ8OZzjwxPgV
   PGnW0tm/g2iAG30HtuagQP7OTpibqBurtEE+liVSFgoD0or4zYhPk3mz+OMVm5/4
   1DdLLTRtnq7XVTVziy2JpTJVBeF8VDh5G9gQj8iFhXCNfj5ZFNfmjaHCE2oVefc4
   FYVEr4MuoPq0bFmsbAlZMJYJ3d/zvoIx0Wj5IMGUrFNTl2fWzQyc75QMRcdKi2e0
   YUcsFd6aWaHx/dhSid5PwXNryS8hsB4Uf2o2hvn5VXdUD7b9ZhDHvZy9l/RaRZWr
   ih6pwSQ6HE0o6RcZJaAl2rG5i/TCkQN8Z+hOl6rxVSS0UesvhntrVEgo8hXVTnSi
   3FRfWG/AWvDPe/GNRiDCRBBS2S2cNvJrNtpgzxXUh+8oPrOTylDQbn1fXd9wCCey
   bdUj4cHvYJra/XmXOUws+qcUF5wa7aXRm8suk/nrvVws+lOU48C4fvsit1rQbbqG
   0SJsasIpu4x0020zpxFm10TO619yAIeBY0VYDr28dckjJlr5latUFgZY5LcS4IHl
   pxgZa6lA/UcAxgnnc04PWL58ErsZjGH2UL5TF2B1AVLRXVk1g4toM08vMpCWMucy
   nvHIPfxBNT9Io2sVfnf5HL6OjCVaFM0evKQ00lyrRx/ASfkjJKl0Vz8da01ZmaCF
   jUfB2pMVvqJvogflrKwOzjsPbAQbBdTG54dd2vSdCSdxHTcHf6MyxS0xrPIUBRjR
   irUPU2ZzbTa/M5qfSMEsv6GMLDjtbn00ckBhq7Xc8ecHXmhPWP4PIC36deXorFVS
   4sEcWbXQmNTJyYG0ex3Id9e+KZyKGwQm0Ts49sH8GCEd4VNJ48WdI/YrNBmz67RQ
   HN0GIxOufDGiFxFrWjN7gOk0V75G2sLv6piA4N+2suvHYVyl0E7FGhUzTtDxhnAi
   VAGNqFaYgp/UnpbLy6FuRQFop/6QT5nKB0v0LSwwdjKCFPXbCK34ybuTgV5RHCQJ
   58CIyxcciGn7j0CIOZdT9F4zW4zIdjPvEcGQVWQtseknxA8DUoY9y0XIqDhFRd0y
   1Q/4ynNFriItA83Q9XJk+DBrErRaXAcAc1Ti5jkNznyR5IGiHaliPIVhrYisVicm
   +J1W93tf/4PgxEmB3aRPQPQK5xysT3Vh74bwXfIKRwQ4VLFPoSWuMh3hVtHB1dr6
   NY3jELf5DXg2GYJ9cnfOiGhCNmVBb9KI/aCWPxg45wZpwI3DtS7ueia/qBDY5N+0
   UDDdUkW6EP1pkdvhBHyhAHTUdS6P/V00O0PolSWwCNwXP/x5xmiz6yvy3YHg9b8H
   4e+5HP3Fc6Q6jTRnZSB8BJVcLbhMIKDf3KP1iGdz7wKfAfgl/lJWkm+N9lv8196U
   9208fbv6HttjU3zOxH2oOVaptDOGdA024TciOR/FS/nL+q4zh8lDcRFo4sKPUNQt
   wYwDTJGMdxQ0aGhOIOEaDJ70HHvhq74hwwfn7DSimqGJvEub2kKkDPjuQwv/+P1R
   4jV18QffWlQZMVa+OdOSYU2pI05XfGCapCHv3ZoD/orpNCEV0auMa1vKdQObOBOS
   /6TIcVojw3tHKqtqSDYUjihFEeFYq3vLrfe9C/DAapim9M5P8ZlyndCJrXgr2Kg0
   RnkoXJ7kTGK7cyzdudhaS+b5JaJOf3tsC64XMh3o0s9OdMwKqhbLIpGuWYOeiqm9
   pRdaSPpc+NtzWTLIyVPlm22mGwpnjkkilwpFj3qtd1G1yYlGThn4/BvcOAA+qCH2
   2+yeL1MzdTXVVTYy/nbux7WwZ5RXJmJOJaSzbEOXCT27FgXshv872HLTgePmYCJC
   H2OVUi/PB9YTyBXXnw+smoXT4w0pcq3WPs7qQXz6GKj7R0mFfTjpRd6uH3hgdS5c
   bg+PwMWsRKigE6mWFpMwrliS8CfR2yYgjhRav7wGa4ja7RdmZoLzT8UBN2Yg6P/K
   ceWA1gX6rdVUalrUvmcfR64ry06IfotXXNFwQc3vI6s7khHSUZX5Rsw55RK3E0El
   NpZxfFHv17d2xwFkGRAYqJao+qo37WtfG6Ynx4cqQyLJzlRn++5RG6K1nCwqhErp
   k4vDR2uHIwAPiW0StX9ZbBjO2smRTIuWS2WhmhZwJkDqSHmCiRI2tPsxCtLpM8t2



Ounsworth, et al.        Expires 9 January 2025                [Page 45]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   IhTVy/ObAdQGPDngTNIPH8kuoRrBhWGIiWJMlo8LkImCRt5m/8DiaL8C2BQNL+BW
   BBcak/JZrLkKZOZM7pFwWruHVEd0608XerfiVO3ypqAxImJ2xcdDkLys4jDlEMsC
   3oz4RQGXahj2Pr8Jxu8i0TIDDdV5MZw9wId/m+0/vSD8BOAu09WuV6ppUWkDZLHl
   zf12zx3ZzBF/CMqZNsxMdTFNbu2qQ2/CZMlEvZ9f0gxn6qNf8NHCUqdeRr7p9z8P
   uGHErLHqCvQMrzia71cD4URV//SR8EUQkoo9imtw3XT2uKGUIjT/dDyqWl8BlAZ6
   4dUp9EWmHwG1cyKBcu2dtD0d4BMol1g4TOF7u/3hHcgOoiR+ON/37MoxkX9mHt6t
   P7hkVWy0Mb3Sjej12DG75D9z8gAzHyQhOs3suNliCzCUmUVYm5MvWdySiuShm6yu
   +9Ah+GqvESuNr/h6s1gZGbdCe9llGdFPniilhL5J9oDgYMp+wi2IEeOugOFoaY1e
   2OI1OPjBpg1071ko9B3CGD+0PkPvKYmMGs0HTnzFWCLPj5dG2kg7PEltarKvLVTI
   xrbjw03l3SXmqpNPU8SqFJ7hB3OpFJgjqL95IRTa68UM8aaUKLMaQjjx08+e13P3
   wwY3niCR5U751fus4ArGLN2JgfPB7bPSdz043PIvxsCYZxUQXSW3xWhWQqaHJLml
   19obvnf/tEXQZLheAr7hOEb/UTNUIBj/A6LfB0Gs012B1aXfne4W9K/OFXc9p0C7
   aWIfjfMrA/idOrd1Eoo2NGLid+wp8aXyDZkCf5OUretEFHqQcQ2Jznh8R4mh2Tf7
   hT8+Gj5Su6bZggHi9iIJZ1G7i0j4Wm3g6DJAXF6KbChMayKRunDpk6Nm5iOeTmT+
   Vi4OJncuI6HezZMzO2s+2iY33uDL7tFR8fVn7dQiF78c1aNhWjfmfIsLNQdZxt6o
   rvnwSrZpdVhOtAu+vYVaEAShdHgfzvPSDHIjgyxs6mGdk0uDsGpPf5d3e9KV40rX
   ir2OXaYMOq2KTkLb6KHHxZayLG0D9/qSBOnSE/aXNhh1cHtKeYAejjXmfzsmgNEL
   PNxFRrx8pEHG1Se0GJNJVZE9u6B2r9f09TgTxgPX/6XpBNUrlz21fsIvNpRL48cw
   LHOCgYP/SAgE3gzRC6G5NEE19wQZHsFNGeUeGvrvUQgTyT1YwLx+Abvp57bVjgLW
   li185/K1a8BmJ204RHfDhSFe7sVAIoI2pUcz7ydb178DCAvupP20CxUIkgOk3C+c
   gUzTwsFU4iiix282ZBa8/nTUnH9r3IDJQJwdWtMCnByCc43UeVShWV3isRF+ANl6
   lSevNj0uzGE07a5gPahctBWMmevh6qFcv5XucwNRe7en96o7CgK+5TCBkwIBADAT
   BgcqhkjOPQIBBggqhkjOPQMBBwR5MHcCAQEEIGS03QxzabfR/cKWFDEkvue30guK
   RrdY2Lm6isBSMZfZoAoGCCqGSM49AwEHoUQDQgAEXonulf0l4bFdPgABD7f+1Iya
   s262VNWRygSwg219XL9WZKcvkmmxNj36XSu0s3waWcNLcRPm4yFE+I9844CA2g==
   -----END PRIVATE KEY-----

B.1.3.  MLDSA44-ECDSA-P256 Self-Signed X509 Certificate

   -----BEGIN CERTIFICATE-----
   MIIP+TCCBhqgAwIBAgIUEsa5EwG0Ligbb3NMHEmsqr0IoKMwDQYLYIZIAYb6a1AI
   AQQwEjEQMA4GA1UEAwwHb3FzdGVzdDAeFw0yNDAzMDEyMzE5MzFaFw0yNTAzMDEy
   MzE5MzFaMBIxEDAOBgNVBAMMB29xc3Rlc3QwggWBMA0GC2CGSAGG+mtQCAEEA4IF
   bgAwggVpA4IFIQAlpLNsQ5cJPbsWBeyG/zvYctOB4+ZgIkIfY5VSL88H1hPIFdef
   D6yahdPjDSlyrdY+zupBfPoYqPtHSYV9OOlF3q4feGB1LlxuD4/AxaxEqKATqZYW
   kzCuWJLwJ9HbJiCOFFq/vAZriNrtF2ZmgvNPxQE3ZiDo/8px5YDWBfqt1VRqWtS+
   Zx9HrivLToh+i1dc0XBBze8jqzuSEdJRlflGzDnlErcTQSU2lnF8Ue/Xt3bHAWQZ
   EBiolqj6qjfta18bpifHhypDIsnOVGf77lEborWcLCqESumTi8NHa4cjAA+JbRK1
   f1lsGM7ayZFMi5ZLZaGaFnAmQOpIeYKJEja0+zEK0ukzy3YiFNXL85sB1AY8OeBM
   0g8fyS6hGsGFYYiJYkyWjwuQiYJG3mb/wOJovwLYFA0v4FYEFxqT8lmsuQpk5kzu
   kXBau4dUR3TrTxd6t+JU7fKmoDEiYnbFx0OQvKziMOUQywLejPhFAZdqGPY+vwnG
   7yLRMgMN1XkxnD3Ah3+b7T+9IPwE4C7T1a5XqmlRaQNkseXN/XbPHdnMEX8Iypk2
   zEx1MU1u7apDb8JkyUS9n1/SDGfqo1/w0cJSp15Gvun3Pw+4YcSsseoK9AyvOJrv
   VwPhRFX/9JHwRRCSij2Ka3DddPa4oZQiNP90PKpaXwGUBnrh1Sn0RaYfAbVzIoFy
   7Z20PR3gEyiXWDhM4Xu7/eEdyA6iJH443/fsyjGRf2Ye3q0/uGRVbLQxvdKN6PXY
   MbvkP3PyADMfJCE6zey42WILMJSZRVibky9Z3JKK5KGbrK770CH4aq8RK42v+Hqz
   WBkZt0J72WUZ0U+eKKWEvkn2gOBgyn7CLYgR466A4WhpjV7Y4jU4+MGmDXTvWSj0
   HcIYP7Q+Q+8piYwazQdOfMVYIs+Pl0baSDs8SW1qsq8tVMjGtuPDTeXdJeaqk09T



Ounsworth, et al.        Expires 9 January 2025                [Page 46]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   xKoUnuEHc6kUmCOov3khFNrrxQzxppQosxpCOPHTz57Xc/fDBjeeIJHlTvnV+6zg
   CsYs3YmB88Hts9J3PTjc8i/GwJhnFRBdJbfFaFZCpockuaXX2hu+d/+0RdBkuF4C
   vuE4Rv9RM1QgGP8Dot8HQazTXYHVpd+d7hb0r84Vdz2nQLtpYh+N8ysD+J06t3US
   ijY0YuJ37CnxpfINmQJ/k5St60QUepBxDYnOeHxHiaHZN/uFPz4aPlK7ptmCAeL2
   IglnUbuLSPhabeDoMkBcXopsKExrIpG6cOmTo2bmI55OZP5WLg4mdy4jod7NkzM7
   az7aJjfe4Mvu0VHx9Wft1CIXvxzVo2FaN+Z8iws1B1nG3qiu+fBKtml1WE60C769
   hVoQBKF0eB/O89IMciODLGzqYZ2TS4Owak9/l3d70pXjSteKvY5dpgw6rYpOQtvo
   ocfFlrIsbQP3+pIE6dIT9pc2GHVwe0p5gB6ONeZ/OyaA0Qs83EVGvHykQcbVJ7QY
   k0lVkT27oHav1/T1OBPGA9f/pekE1SuXPbV+wi82lEvjxzAsc4KBg/9ICATeDNEL
   obk0QTX3BBkewU0Z5R4a+u9RCBPJPVjAvH4Bu+nnttWOAtaWLXzn8rVrwGYnbThE
   d8OFIV7uxUAigjalRzPvJ1vXvwMIC+6k/bQLFQiSA6TcL5yBTNPCwVTiKKLHbzZk
   Frz+dNScf2vcgMlAnB1a0wKcHIJzjdR5VKFZXeKxEX4A2XqVJ682PS7MYTTtrmA9
   qFy0FYyZ6+HqoVy/le5zA1F7t6f3qjsKAr7lA0IABF6J7pX9JeGxXT4AAQ+3/tSM
   mrNutlTVkcoEsINtfVy/VmSnL5JpsTY9+l0rtLN8GlnDS3ET5uMhRPiPfOOAgNqj
   ITAfMB0GA1UdDgQWBBR72ZiceTDE3NvBPY4ryxmGCVY5pjANBgtghkgBhvprUAgB
   BAOCCcgAMIIJwwOCCXUAQZt6/8sreFucKJFrqjKF21L5S9zuNhAA7Klvuqd0/4R3
   3efTQ52tdQg345qqpW0BZRlgUDSWnq1Bmu3dyjcGDHY8LLvHyoOyTe02AMgwTW2c
   UH6XpqeaGu1cab6l0owF2m5yGV9EmKYC8fky4JhEk2As83l2xlc4mVbA09NKfvQs
   p94zzodQdCYFJ5VY62OubFsy3m6rlzaRCvJ+GLfpp1UeU0vxgqjIrPC3bDnId+gH
   Wpkq+3lZLP/duGxYeXeeOm4zaQuaIUCJ0e/mFCFpbHywwgncay+0OQFDTFRYhNDY
   ZlJR3AWLF47Grn/MhOEj5VO4GJvj+CjlGlOe3Fn6ABEjdRSDUOYykGg3NtnLIGkf
   hM8j4hd+jfqGKwZrPNz/YaNC4YtKX1uwbjv1gGZSQ7I6zBPw37r1yblTAielXtPE
   l1DuoFr3f05gzJJF6OuG6s7iBoUc5n1ovrn3UO85nCbSqqO2Ky15xsqTkFPnz4+g
   JUOZ0SkqznulXIaMtJf/SmF4Pn23fmjqpOBTqOkBAOjloQIgSiQ90z45JU8Cy5sM
   COU5d6shh9oM1BMIhFco9Zgxc/VF3WWd7ig9NT120HO6seAtMEMMSjtEUJsqWyQI
   NnQvNVCTdG9joftmHnn5Uczar6HLr1HNYvjjXVudrp6ziKTFgblklGdcrqN0OTtx
   hNSyacxucS5DWm5RGicRQaWb8Khob1lSn9nAZC0rOaChzjzJ0F5FYH2j3vL4ztLa
   D5LMT+0FV5q0gkDHcowdQmWBiSwgyvJm+SMUmT/jyDPyf1VR71i1R3jeVqTu+kaw
   ZkUpBztGzMLuPUrTlFeWa+QitEQegzObUw3zSRYaOpKa+Xz49zSLEEK5mOpKIvp0
   qub+LXJXPBs38CUSxh2MRCOd8t5LlQCnKOQbVOu0UHvWmEhG/Oa/3j97PC1xrLOj
   KTYSDrjhmwcPkJql5zzgVC+gBHcmeUWSutlp4HYskp0WyWc2fR4rKTawH6D3TCdu
   IfBtlj80CWhNrWoaC+8yN+Y8rsogv0VoeUkVbneAg7J7TuJo9poTu/RFyEJ4AkIq
   XzOxpjiwyUStVY5YH3x8zgquFau7bK8RQLowC8VFFWA8BFcgAgQkmasiipREpGaZ
   PxFelJbl6en0UHS1VWDF0sdadypkY+hAcVGPEOt9pcWvP0o31ioybplBLe831d1q
   TtD1TfBHXNr1cFErqfwryRUhV0JYNkwKGt6IcN1sfe+j23wo/b1BRDld4z1WL45o
   7nebuv499egoHN5+AHFSGxleBVWvZe0iJzXWMqfLGfEkXg92qh6+vMxQW0Dsh0lD
   mJP8xaD2cXZVN8+X1H7ESD7fC8MyKgtHAzuPcNjx0Zl8wihPNz/LBc9H1o9+LyDT
   wcl4Mys3XDQqeg/efLB7W7eyWcCR/TeVO1sNmFIfMOlqbA04hqao3q9PdN4LlKCR
   RjDqxGMCnE6+/YZSmWbB4CyYQsy4yXHss3SNKFdO4KccUUMVRTAcvSmHs1lUOIGI
   OUaFJ6yw/jp5Wjybx7G5r6v/kvnlh5V3EfdW4srrbMtiSvDrNsc6/pV4+/WJ8lDa
   T++u+phJpKAPbc2t0Tly/x6/O0L+PJLMlD9qK1nGYdttvEDsKgHe4jTkMytiYQp7
   VolKPsbgLA5o5esMm4YVtfPOJNiRIPa6NlVgf/enNziReTZVgWi8g/yDdcdpMuS9
   Op6Hbx0gdH7vfFNjAyuSorTzrUIlJPv5ZYdVw3qj+zcWybHAeozJfPQyXS5QoJm9
   7mXfmNvtH620g5qG6C9XyoP7oIul17bMiX7A0/cg06y3pxWRVw/Tmn1sn4Er3jBg
   XATF5+2R/euNmggiQAlYhXshKj401wQT+pFgFruB3/U2nSuZtTrOJXp33pcCEWjx
   USmitfUl0znkW2dIM4lD7RUUftJKJnSDWYeJSyM3rijlOftc5BZontZuzzeNBxgs
   HX7Q26p5SOJWbSjsffCTQfxxrxNGUxl8qVdDqtAhZjw+ZnfD8LiJhHcrYERTFxW7
   MjjMV7tP06XAqybmayAWCtbgJlDbZb/thROfPmmaaymiCbnDKkQK0TLGNtiZ0ijy



Ounsworth, et al.        Expires 9 January 2025                [Page 47]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   yd5YLlc8c1lBpxsNe4Myvd4He743kKlS8Ep5YzrIqkwPde0fA6pnpHiUxoi4wmsK
   NTDOlkV9Cly5tfrRkDyfNOqLMO0pqzDXRpATUpu8xey5s+GHDmhI1K1ojybN3MKh
   TTYJ9Gla+52EhetT8a5Dm1q+5fFjpOPtDhJNKhdOOMZDRDCisf+SEeGi8Wjybw7n
   x3w4hQZZpDzTknq3MZbmnlilphajEPYulLAgGAHmXEPHFMOT56cJxTCj5WUqksRh
   /07PXQ62wVCpgZk7IUY0v7UF+dcomp8kHaLT1KGCD1v6XgD2uySyt9ha+3MEsOjk
   PhfLWKeVAYFQX8maIajcLKckHE27rzDgJ66nhJU/YmxtvRo84EGfvkkqpDxVpMl1
   KWVE5U6nXSNX9KAwVr4v0Gn+Lw52WMHZAhzWDGDUE8Pkb/a4l+Wbj8xDmDZXSNqx
   RT9oAI2IN2yZV0nTY+tlmGYgOMrdNMr6KhtwE6E7Q6+84Cy4xKkwY3o4ob49SSCr
   WHOp1mtvqUIkvfo9nV0qm3AlCd6blZGCUtYWJVhdLUY9+YqtqvAlZWom6TW9609n
   xQ2pDbUnzz3RBSWotye/JZ3Iixsv1nlgf32+0x6IGutdL7SYQ8C4LiunoJTkF+A6
   U5Chd9MiPvrUXjii1eiifwlwOZUxpvS50tBXIwQTuriV3AZPS5R15nJp1t4YzGOE
   QwRJtNFnAkLsZ4iTrj/zDtgR6a2r4m/vzhUkrxIdZiptMO1E21zKfUMOtddPVqNg
   SF4emCWJhmaoA0fQbRmZAQxqSajNFB4XPBK729A3wtTaN2TG1vm4iXzjsJuXhDzM
   52NYEv8m2RoyKTiZFEfHndtvAHrqrdV1ud5jYi0GoA9YpnrdLiuzh1ljru3hk0WP
   ejLjifxq6XEHkmBlsaiJSFpDxbhwwuW2zBvsUtbyU+Y8KxUuSKmem1m2JUE+UOIv
   s7eJpbVOEA31p9Jd5rYlIPpuJ0gfRwyK65Rj20DYmdGoJpBPZbc2awktnniBMyI4
   P1hehYqQl5+hqavvGjM3OExPVVuQl5vA2dzm6QYMECNOWV9jgsfV5/H3EhQiJTtx
   dpigxtff/QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0dKzgDSAAwRQIgTgIe913r
   u9h+Hh3v0dLD71pyH3EidqMddgc0vjd7qF8CIQCNyqGxNNM4DuRCkDTWH+HdmGJ1
   F2ljUsBn8vo47P9JvA==
   -----END CERTIFICATE-----

Appendix C.  Implementation Considerations

C.1.  FIPS certification

   One of the primary design goals of this specification is for the
   overall composite algorithm to be able to be considered FIPS-approved
   even when one of the component algorithms is not.

   Implementors seeking FIPS certification of a composite Signature
   algorithm where only one of the component algorithms has been FIPS-
   validated or FIPS-approved should credit the FIPS-validated component
   algorithm with full security strength, the non-FIPS-validated
   component algorithm with zero security, and the overall composite
   should be considered at least as strong and thus FIPS-approved.

   The authors wish to note that this gives composite algorithms great
   future utility both for future cryptographic migrations as well as
   bridging across jurisdictions, for example defining composite
   algorithms which combine FIPS cryptography with cryptography from a
   different national standards body.









Ounsworth, et al.        Expires 9 January 2025                [Page 48]

Internet-Draft             PQ Composite ML-DSA                 July 2024


C.2.  Backwards Compatibility

   The term "backwards compatibility" is used here to mean something
   more specific; that existing systems as they are deployed today can
   interoperate with the upgraded systems of the future.  This draft
   explicitly does not provide backwards compatibility, only upgraded
   systems will understand the OIDs defined in this document.

   If backwards compatibility is required, then additional mechanisms
   will be needed.  Migration and interoperability concerns need to be
   thought about in the context of various types of protocols that make
   use of X.509 and PKIX with relation to digital signature objects,
   from online negotiated protocols such as TLS 1.3 [RFC8446] and IKEv2
   [RFC7296], to non-negotiated asynchronous protocols such as S/MIME
   signed email [RFC8551], document signing such as in the context of
   the European eIDAS regulations [eIDAS2014], and publicly trusted code
   signing [codeSigningBRsv2.8], as well as myriad other standardized
   and proprietary protocols and applications that leverage CMS
   [RFC5652] signed structures.  Composite simplifies the protocol
   design work because it can be implemented as a signature algorithm
   that fits into existing systems.

C.2.1.  Hybrid Extensions (Keys and Signatures)

   The use of Composite Crypto provides the possibility to process
   multiple algorithms without changing the logic of applications but
   updating the cryptographic libraries: one-time change across the
   whole system.  However, when it is not possible to upgrade the crypto
   engines/libraries, it is possible to leverage X.509 extensions to
   encode the additional keys and signatures.  When the custom
   extensions are not marked critical, although this approach provides
   the most backward-compatible approach where clients can simply ignore
   the post-quantum (or extra) keys and signatures, it also requires all
   applications to be updated for correctly processing multiple
   algorithms together.

Appendix D.  Intellectual Property Considerations

   The following IPR Disclosure relates to this draft:

   https://datatracker.ietf.org/ipr/3588/










Ounsworth, et al.        Expires 9 January 2025                [Page 49]

Internet-Draft             PQ Composite ML-DSA                 July 2024


Appendix E.  Contributors and Acknowledgements

   This document incorporates contributions and comments from a large
   group of experts.  The Editors would especially like to acknowledge
   the expertise and tireless dedication of the following people, who
   attended many long meetings and generated millions of bytes of
   electronic mail and VOIP traffic over the past few years in pursuit
   of this document:

   Daniel Van Geest (CryptoNext), Britta Hale, Tim Hollebeek (Digicert),
   Panos Kampanakis (Cisco Systems), Richard Kisley (IBM), Serge Mister
   (Entrust), Francois Rousseau, Falko Strenzke, Felipe Ventura
   (Entrust), Alexander Ralien (Siemens), Jose Ignacio Escribano and Jan
   Oupicky

   We are grateful to all, including any contributors who may have been
   inadvertently omitted from this list.

   This document borrows text from similar documents, including those
   referenced below.  Thanks go to the authors of those documents.
   "Copying always makes things easier and less error prone" -
   [RFC8411].

E.1.  Making contributions

   Additional contributions to this draft are welcome.  Please see the
   working copy of this draft at, as well as open issues at:

   https://github.com/lamps-wg/draft-composite-sigs

Authors' Addresses

   Mike Ounsworth
   Entrust Limited
   2500 Solandt Road -- Suite 100
   Ottawa, Ontario  K2K 3G5
   Canada
   Email: mike.ounsworth@entrust.com


   John Gray
   Entrust Limited
   2500 Solandt Road -- Suite 100
   Ottawa, Ontario  K2K 3G5
   Canada
   Email: john.gray@entrust.com





Ounsworth, et al.        Expires 9 January 2025                [Page 50]

Internet-Draft             PQ Composite ML-DSA                 July 2024


   Massimiliano Pala
   OpenCA Labs
   New York City, New York,
   United States of America
   Email: director@openca.org


   Jan Klaussner
   Bundesdruckerei GmbH
   Kommandantenstr. 18
   10969 Berlin
   Germany
   Email: jan.klaussner@bdr.de


   Scott Fluhrer
   Cisco Systems
   Email: sfluhrer@cisco.com

































Ounsworth, et al.        Expires 9 January 2025                [Page 51]