
ï»¿

Internet Engineering Task Force (IETF) M. Welzl
Request for Comments: 8923 S. Gjessing
Category: Informational University of Oslo
ISSN: 2070-1721 October 2020

 A Minimal Set of Transport Services for End Systems

Abstract

 This document recommends a minimal set of Transport Services offered
 by end systems and gives guidance on choosing among the available
 mechanisms and protocols. It is based on the set of transport
 features in RFC 8303.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8923.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Terminology
 3. Deriving the Minimal Set
 4. The Reduced Set of Transport Features
 4.1. CONNECTION-Related Transport Features
 4.2. DATA-Transfer-Related Transport Features
 4.2.1. Sending Data
 4.2.2. Receiving Data
 4.2.3. Errors
 5. Discussion
 5.1. Sending Messages, Receiving Bytes
 5.2. Stream Schedulers without Streams
 5.3. Early Data Transmission
 5.4. Sender Running Dry
 5.5. Capacity Profile
 5.6. Security
 5.7. Packet Size
 6. The Minimal Set of Transport Features
 6.1. ESTABLISHMENT, AVAILABILITY, and TERMINATION

 6.2. MAINTENANCE
 6.2.1. Connection Groups
 6.2.2. Individual Connections
 6.3. DATA Transfer
 6.3.1. Sending Data
 6.3.2. Receiving Data
 7. IANA Considerations
 8. Security Considerations
 9. References
 9.1. Normative References
 9.2. Informative References
 Appendix A. The Superset of Transport Features
 A.1. CONNECTION-Related Transport Features
 A.2. DATA-Transfer-Related Transport Features
 A.2.1. Sending Data
 A.2.2. Receiving Data
 A.2.3. Errors
 Acknowledgements
 Authors’ Addresses

1. Introduction

 Currently, the set of Transport Services that most applications use
 is based on TCP and UDP (and protocols that are layered on top of
 them); this limits the ability for the network stack to make use of
 features of other transport protocols. For example, if a protocol
 supports out-of-order message delivery but applications always assume
 that the network provides an ordered byte stream, then the network
 stack can not immediately deliver a message that arrives out of
 order; doing so would break a fundamental assumption of the
 application. The net result is unnecessary head-of-line blocking
 delay.

 By exposing the Transport Services of multiple transport protocols, a
 transport system can make it possible for applications to use these
 services without being statically bound to a specific transport
 protocol. The first step towards the design of such a system was
 taken by [RFC8095], which surveys a large number of transports, and
 [RFC8303] as well as [RFC8304], which identify the specific transport
 features that are exposed to applications by the protocols TCP,
 Multipath TCP (MPTCP), UDP(-Lite), and Stream Control Transmission
 Protocol (SCTP), as well as the Low Extra Delay Background Transport
 (LEDBAT) congestion control mechanism. LEDBAT was included as the
 only congestion control mechanism in this list because the "low extra
 delay background transport" service that it offers is significantly
 different from the typical service provided by other congestion
 control mechanisms. This memo is based on these documents and
 follows the same terminology (also listed below). Because the
 considered transport protocols conjointly cover a wide range of
 transport features, there is reason to hope that the resulting set
 (and the reasoning that led to it) will also apply to many aspects of
 other transport protocols that may be in use today or may be designed
 in the future.

 By decoupling applications from transport protocols, a transport
 system provides a different abstraction level than the Berkeley
 sockets interface [POSIX]. As with high- vs. low-level programming
 languages, a higher abstraction level allows more freedom for
 automation below the interface, yet it takes some control away from
 the application programmer. This is the design trade-off that a
 transport system developer is facing, and this document provides
 guidance on the design of this abstraction level. Some transport
 features are currently rarely offered by APIs, yet they must be
 offered or they can never be used. Other transport features are
 offered by the APIs of the protocols covered here, but not exposing
 them in an API would allow for more freedom to automate protocol
 usage in a transport system. The minimal set presented here is an
 effort to find a middle ground that can be recommended for transport
 systems to implement, on the basis of the transport features
 discussed in [RFC8303].

 Applications use a wide variety of APIs today. While this document
 was created to ensure the API developed in the Transport Services
 (TAPS) Working Group [TAPS-INTERFACE] includes the most important
 transport features, the minimal set presented here must be reflected
 in *all* network APIs in order for the underlying functionality to
 become usable everywhere. For example, it does not help an
 application that talks to a library that offers its own communication
 interface if the underlying Berkeley Sockets API is extended to offer
 "unordered message delivery", but the library only exposes an ordered
 byte stream. Both the Berkeley Sockets API and the library would
 have to expose the "unordered message delivery" transport feature
 (alternatively, there may be ways for certain types of libraries to
 use this transport feature without exposing it, based on knowledge
 about the applications, but this is not the general case).
 Similarly, transport protocols such as the Stream Control
 Transmission Protocol (SCTP) offer multi-streaming, which cannot be
 utilized, e.g., to prioritize messages between streams, unless
 applications communicate the priorities and the group of connections
 upon which these priorities should be applied. In most situations,
 in the interest of being as flexible and efficient as possible, the
 best choice will be for a library to expose at least all of the
 transport features that are recommended as a "minimal set" here.

 This "minimal set" can be implemented "one-sided" over TCP. This
 means that a sender-side transport system can talk to a standard TCP
 receiver, and a receiver-side transport system can talk to a standard
 TCP sender. If certain limitations are put in place, the "minimal
 set" can also be implemented "one-sided" over UDP. While the
 possibility of such "one-sided" implementation may help deployment,
 it comes at the cost of limiting the set to services that can also be
 provided by TCP (or, with further limitations, UDP). Thus, the
 minimal set of transport features here is applicable for many, but
 not all, applications; some application protocols have requirements
 that are not met by this "minimal set".

 Note that, throughout this document, protocols are meant to be used
 natively. For example, when transport features of TCP, or
 "implementation over" TCP is discussed, this refers to native usage
 of TCP rather than TCP being encapsulated in some other transport
 protocol such as UDP.

2. Terminology

 Transport Feature: A specific end-to-end feature that the transport
 layer provides to an application. Examples include
 confidentiality, reliable delivery, ordered delivery, message-
 versus-stream orientation, etc.

 Transport Service: A set of Transport Features, without an
 association to any given framing protocol, that provides a
 complete service to an application.

 Transport Protocol: An implementation that provides one or more
 different Transport Services using a specific framing and header
 format on the wire.

 Application: An entity that uses a transport-layer interface for
 end-to-end delivery of data across the network (this may also be
 an upper-layer protocol or tunnel encapsulation).

 Application-specific knowledge: Knowledge that only applications
 have.

 End system: An entity that communicates with one or more other end
 systems using a transport protocol. An end system provides a
 transport-layer interface to applications.

 Connection: Shared state of two or more end systems that persists
 across messages that are transmitted between these end systems.

 Connection Group: A set of connections that share the same

 configuration (configuring one of them causes all other
 connections in the same group to be configured in the same way).
 We call connections that belong to a connection group "grouped",
 while "ungrouped" connections are not a part of a connection
 group.

 Socket: The combination of a destination IP address and a
 destination port number.

 Moreover, throughout the document, the protocol name "UDP(-Lite)" is
 used when discussing transport features that are equivalent for UDP
 and UDP-Lite; similarly, the protocol name "TCP" refers to both TCP
 and MPTCP.

3. Deriving the Minimal Set

 We assume that applications have no specific requirements that need
 knowledge about the network, e.g., regarding the choice of network
 interface or the end-to-end path. Even with these assumptions, there
 are certain requirements that are strictly kept by transport
 protocols today, and these must also be kept by a transport system.
 Some of these requirements relate to transport features that we call
 "Functional".

 Functional transport features provide functionality that cannot be
 used without the application knowing about them, or else they violate
 assumptions that might cause the application to fail. For example,
 ordered message delivery is a functional transport feature: it cannot
 be configured without the application knowing about it because the
 application’s assumption could be that messages always arrive in
 order. Failure includes any change of the application behavior that
 is not performance oriented, e.g., security.

 "Change DSCP" and "Disable Nagle algorithm" are examples of transport
 features that we call "Optimizing"; if a transport system
 autonomously decides to enable or disable them, an application will
 not fail, but a transport system may be able to communicate more
 efficiently if the application is in control of this optimizing
 transport feature. These transport features require application-
 specific knowledge (e.g., about delay/bandwidth requirements or the
 length of future data blocks that are to be transmitted).

 The transport features of IETF transport protocols that do not
 require application-specific knowledge and could therefore be
 utilized by a transport system on its own without involving the
 application are called "Automatable".

 We approach the construction of a minimal set of transport features
 in the following way:

 1. Categorization (Appendix A): The superset of transport features
 from [RFC8303] is presented, and transport features are
 categorized as Functional, Optimizing, or Automatable for later
 reduction.

 2. Reduction (Section 4): A shorter list of transport features is
 derived from the categorization in the first step. This removes
 all transport features that do not require application-specific
 knowledge or would result in semantically incorrect behavior if
 they were implemented over TCP or UDP.

 3. Discussion (Section 5): The resulting list shows a number of
 peculiarities that are discussed, to provide a basis for
 constructing the minimal set.

 4. Construction (Section 6): Based on the reduced set and the
 discussion of the transport features therein, a minimal set is
 constructed.

 Following [RFC8303] and retaining its terminology, we divide the
 transport features into two main groups as follows:

 1. CONNECTION-related transport features

 * ESTABLISHMENT
 * AVAILABILITY
 * MAINTENANCE
 * TERMINATION

 2. DATA-Transfer-related transport features

 * Sending Data
 * Receiving Data
 * Errors

4. The Reduced Set of Transport Features

 By hiding automatable transport features from the application, a
 transport system can gain opportunities to automate the usage of
 network-related functionality. This can facilitate using the
 transport system for the application programmer and it allows for
 optimizations that may not be possible for an application. For
 instance, system-wide configurations regarding the usage of multiple
 interfaces can better be exploited if the choice of the interface is
 not entirely up to the application. Therefore, since they are not
 strictly necessary to expose in a transport system, we do not include
 automatable transport features in the reduced set of transport
 features. This leaves us with only the transport features that are
 either optimizing or functional.

 A transport system should be able to communicate via TCP or UDP if
 alternative transport protocols are found not to work. For many
 transport features, this is possible, often by simply not doing
 anything when a specific request is made. For some transport
 features, however, it was identified that direct usage of neither TCP
 nor UDP is possible; in these cases, even not doing anything would
 incur semantically incorrect behavior. Whenever an application would
 make use of one of these transport features, this would eliminate the
 possibility to use TCP or UDP. Thus, we only keep the functional and
 optimizing transport features for which an implementation over either
 TCP or UDP is possible in our reduced set.

 The following list contains the transport features from Appendix A,
 reduced using these rules. The "minimal set" derived in this
 document is meant to be implementable "one-sided" over TCP and, with
 limitations, UDP. In the list, we therefore precede a transport
 feature with "T:" if an implementation over TCP is possible, "U:" if
 an implementation over UDP is possible, and "T,U:" if an
 implementation over either TCP or UDP is possible.

4.1. CONNECTION-Related Transport Features

 ESTABLISHMENT:

 * T,U: Connect
 * T,U: Specify number of attempts and/or timeout for the first
 establishment message
 * T,U: Disable MPTCP
 * T: Configure authentication
 * T: Hand over a message to reliably transfer (possibly multiple
 times) before connection establishment
 * T: Hand over a message to reliably transfer during connection
 establishment

 AVAILABILITY:

 * T,U: Listen
 * T,U: Disable MPTCP
 * T: Configure authentication

 MAINTENANCE:

 * T: Change timeout for aborting connection (using retransmit limit
 or time value)
 * T: Suggest timeout to the peer
 * T,U: Disable Nagle algorithm
 * T,U: Notification of Excessive Retransmissions (early warning
 below abortion threshold)
 * T,U: Specify DSCP field
 * T,U: Notification of ICMP error message arrival
 * T: Change authentication parameters
 * T: Obtain authentication information
 * T,U: Set Cookie life value
 * T,U: Choose a scheduler to operate between streams of an
 association
 * T,U: Configure priority or weight for a scheduler
 * T,U: Disable checksum when sending
 * T,U: Disable checksum requirement when receiving
 * T,U: Specify checksum coverage used by the sender
 * T,U: Specify minimum checksum coverage required by receiver
 * T,U: Specify DF field
 * T,U: Get max. transport-message size that may be sent using a non-
 fragmented IP packet from the configured interface
 * T,U: Get max. transport-message size that may be received from the
 configured interface
 * T,U: Obtain ECN field
 * T,U: Enable and configure a "Low Extra Delay Background Transfer"

 TERMINATION:

 * T: Close after reliably delivering all remaining data, causing an
 event informing the application on the other side
 * T: Abort without delivering remaining data, causing an event
 informing the application on the other side
 * T,U: Abort without delivering remaining data, not causing an event
 informing the application on the other side
 * T,U: Timeout event when data could not be delivered for too long

4.2. DATA-Transfer-Related Transport Features

4.2.1. Sending Data

 * T: Reliably transfer data, with congestion control
 * T: Reliably transfer a message, with congestion control
 * T,U: Unreliably transfer a message
 * T: Configurable Message Reliability
 * T: Ordered message delivery (potentially slower than unordered)
 * T,U: Unordered message delivery (potentially faster than ordered)
 * T,U: Request not to bundle messages
 * T: Specifying a key id to be used to authenticate a message
 * T,U: Request not to delay the acknowledgement (SACK) of a message

4.2.2. Receiving Data

 * T,U: Receive data (with no message delimiting)
 * U: Receive a message
 * T,U: Information about partial message arrival

4.2.3. Errors

 This section describes sending failures that are associated with a
 specific call to in the "Sending Data" category (Appendix A.2.1).

 * T,U: Notification of send failures
 * T,U: Notification that the stack has no more user data to send
 * T,U: Notification to a receiver that a partial message delivery
 has been aborted

5. Discussion

 The reduced set in the previous section exhibits a number of
 peculiarities, which we will discuss in the following. This section
 focuses on TCP because, with the exception of one particular

 transport feature ("Receive a message"; we will discuss this in
 Section 5.1), the list shows that UDP is strictly a subset of TCP.
 We can first try to understand how to build a transport system that
 can run over TCP, and then narrow down the result further to allow
 that the system can always run over either TCP or UDP (which
 effectively means removing everything related to reliability,
 ordering, authentication, and closing/aborting with a notification to
 the peer).

 Note that, because the functional transport features of UDP are, with
 the exception of "Receive a message", a subset of TCP, TCP can be
 used as a replacement for UDP whenever an application does not need
 message delimiting (e.g., because the application-layer protocol
 already does it). This has been recognized by many applications that
 already do this in practice, by trying to communicate with UDP at
 first and falling back to TCP in case of a connection failure.

5.1. Sending Messages, Receiving Bytes

 For implementing a transport system over TCP, there are several
 transport features related to sending, but only a single transport
 feature related to receiving: "Receive data (with no message
 delimiting)" (and, strangely, "information about partial message
 arrival"). Notably, the transport feature "Receive a message" is
 also the only non-automatable transport feature of UDP(-Lite) for
 which no implementation over TCP is possible.

 To support these TCP receiver semantics, we define an "Application-
 Framed Byte Stream" (AFra Byte Stream). AFra Byte Streams allow
 senders to operate on messages while minimizing changes to the TCP
 socket API. In particular, nothing changes on the receiver side;
 data can be accepted via a normal TCP socket.

 In an AFra Byte Stream, the sending application can optionally inform
 the transport about message boundaries and required properties per
 message (configurable order and reliability, or embedding a request
 not to delay the acknowledgement of a message). Whenever the sending
 application specifies per-message properties that relax the notion of
 reliable in-order delivery of bytes, it must assume that the
 receiving application is 1) able to determine message boundaries,
 provided that messages are always kept intact, and 2) able to accept
 these relaxed per-message properties. Any signaling of such
 information to the peer is up to an application-layer protocol and
 considered out of scope of this document.

 For example, if an application requests to transfer fixed-size
 messages of 100 bytes with partial reliability, this needs the
 receiving application to be prepared to accept data in chunks of 100
 bytes. Then, if some of these 100-byte messages are missing (e.g.,
 if SCTP with Configurable Reliability is used), this is the expected
 application behavior. With TCP, no messages would be missing, but
 this is also correct for the application, and the possible
 retransmission delay is acceptable within the best-effort service
 model (see Section 3.5 of [RFC7305]). Still, the receiving
 application would separate the byte stream into 100-byte chunks.

 Note that this usage of messages does not require all messages to be
 equal in size. Many application protocols use some form of Type-
 Length-Value (TLV) encoding, e.g., by defining a header including
 length fields; another alternative is the use of byte stuffing
 methods such as Consistent Overhead Byte Stuffing (COBS) [COBS]. If
 an application needs message numbers, e.g., to restore the correct
 sequence of messages, these must also be encoded by the application
 itself, as SCTP’s transport features that are related to the sequence
 number are not provided by the "minimum set" (in the interest of
 enabling usage of TCP).

5.2. Stream Schedulers without Streams

 We have already stated that multi-streaming does not require
 application-specific knowledge. Potential benefits or disadvantages

 of, e.g., using two streams of an SCTP association versus using two
 separate SCTP associations or TCP connections are related to
 knowledge about the network and the particular transport protocol in
 use, not the application. However, the transport features "Choose a
 scheduler to operate between streams of an association" and
 "Configure priority or weight for a scheduler" operate on streams.
 Here, streams identify communication channels between which a
 scheduler operates, and they can be assigned a priority. Moreover,
 the transport features in the MAINTENANCE category all operate on
 associations in case of SCTP, i.e., they apply to all streams in that
 association.

 With only these semantics necessary to represent, the interface to a
 transport system becomes easier if we assume that connections may be
 not only a transport protocol’s connection or association, but could
 also be a stream of an existing SCTP association, for example. We
 only need to allow for a way to define a possible grouping of
 connections. Then, all MAINTENANCE transport features can be said to
 operate on connection groups, not connections, and a scheduler
 operates on the connections within a group.

 To be compatible with multiple transport protocols and uniformly
 allow access to both transport connections and streams of a multi-
 streaming protocol, the semantics of opening and closing need to be
 the most restrictive subset of all of the underlying options. For
 example, TCP’s support of half-closed connections can be seen as a
 feature on top of the more restrictive "ABORT"; this feature cannot
 be supported because not all protocols used by a transport system
 (including streams of an association) support half-closed
 connections.

5.3. Early Data Transmission

 There are two transport features related to transferring a message
 early: "Hand over a message to reliably transfer (possibly multiple
 times) before connection establishment", which relates to TCP Fast
 Open [RFC7413], and "Hand over a message to reliably transfer during
 connection establishment", which relates to SCTP’s ability to
 transfer data together with the COOKIE-Echo chunk. Also without TCP
 Fast Open, TCP can transfer data during the handshake, together with
 the SYN packet; however, the receiver of this data may not hand it
 over to the application until the handshake has completed. Also,
 different from TCP Fast Open, this data is not delimited as a message
 by TCP (thus, not visible as a "message"). This functionality is
 commonly available in TCP and supported in several implementations,
 even though the TCP specification does not explain how to provide it
 to applications.

 A transport system could differentiate between the cases of
 transmitting data "before" (possibly multiple times) or "during" the
 handshake. Alternatively, it could also assume that data that are
 handed over early will be transmitted as early as possible, and
 "before" the handshake would only be used for messages that are
 explicitly marked as "idempotent" (i.e., it would be acceptable to
 transfer them multiple times).

 The amount of data that can successfully be transmitted before or
 during the handshake depends on various factors: the transport
 protocol, the use of header options, the choice of IPv4 and IPv6, and
 the Path MTU. A transport system should therefore allow a sending
 application to query the maximum amount of data it can possibly
 transmit before (or, if exposed, during) connection establishment.

5.4. Sender Running Dry

 The transport feature "Notification that the stack has no more user
 data to send" relates to SCTP’s "SENDER DRY" notification. Such
 notifications can, in principle, be used to avoid having an
 unnecessarily large send buffer, yet ensure that the transport sender
 always has data available when it has an opportunity to transmit it.
 This has been found to be very beneficial for some applications

 [WWDC2015]. However, "SENDER DRY" truly means that the entire send
 buffer (including both unsent and unacknowledged data) has emptied,
 i.e., when it notifies the sender, it is already too late; the
 transport protocol already missed an opportunity to send data. Some
 modern TCP implementations now include the unspecified
 "TCP_NOTSENT_LOWAT" socket option that was proposed in [WWDC2015],
 which limits the amount of unsent data that TCP can keep in the
 socket buffer; this allows specifying at which buffer filling level
 the socket becomes writable, rather than waiting for the buffer to
 run empty.

 SCTP allows configuring the sender-side buffer too; the automatable
 Transport Feature "Configure send buffer size" provides this
 functionality, but only for the complete buffer, which includes both
 unsent and unacknowledged data. SCTP does not allow to control these
 two sizes separately. It therefore makes sense for a transport
 system to allow for uniform access to "TCP_NOTSENT_LOWAT" as well as
 the "SENDER DRY" notification.

5.5. Capacity Profile

 The transport features:

 * Disable Nagle algorithm
 * Enable and configure a "Low Extra Delay Background Transfer"
 * Specify DSCP field

 All relate to a QoS-like application need such as "low latency" or
 "scavenger". In the interest of flexibility of a transport system,
 they could therefore be offered in a uniform, more abstract way,
 where a transport system could, e.g., decide by itself how to use
 combinations of LEDBAT-like congestion control and certain DSCP
 values, and an application would only specify a general "capacity
 profile" (a description of how it wants to use the available
 capacity). A need for "lowest possible latency at the expense of
 overhead" could then translate into automatically disabling the Nagle
 algorithm.

 In some cases, the Nagle algorithm is best controlled directly by the
 application because it is not only related to a general profile but
 also to knowledge about the size of future messages. For fine-grain
 control over Nagle-like functionality, the "Request not to bundle
 messages" is available.

5.6. Security

 Both TCP and SCTP offer authentication. TCP authenticates complete
 segments. SCTP allows configuring which of SCTP’s chunk types must
 always be authenticated; if this is exposed as such, it creates an
 undesirable dependency on the transport protocol. For compatibility
 with TCP, a transport system should only allow to configure complete
 transport layer packets, including headers, IP pseudo-header (if any)
 and payload.

 Security is discussed in a separate document [RFC8922]. The minimal
 set presented in the present document excludes all security-related
 transport features from Appendix A: "Configure authentication",
 "Change authentication parameters", "Obtain authentication
 information", and "Set Cookie life value", as well as "Specifying a
 key id to be used to authenticate a message". It also excludes
 security transport features not listed in Appendix A, including
 content privacy to in-path devices.

5.7. Packet Size

 UDP(-Lite) has a transport feature called "Specify DF field". This
 yields an error message in the case of sending a message that exceeds
 the Path MTU, which is necessary for a UDP-based application to be
 able to implement Path MTU Discovery (a function that UDP-based
 applications must do by themselves). The "Get max. transport-message
 size that may be sent using a non-fragmented IP packet from the

 configured interface" transport feature yields an upper limit for the
 Path MTU (minus headers) and can therefore help to implement Path MTU
 Discovery more efficiently.

6. The Minimal Set of Transport Features

 Based on the categorization, reduction, and discussion in Section 3,
 this section describes a minimal set of transport features that end
 systems should offer. Any configuration based on the described
 minimum set of transport feature can always be realized over TCP but
 also gives the transport system flexibility to choose another
 transport if implemented. In the text of this section, "not UDP" is
 used to indicate elements of the system that cannot be implemented
 over UDP. Conversely, all elements of the system that are not marked
 with "not UDP" can also be implemented over UDP.

 The arguments laid out in Section 5 ("discussion") were used to make
 the final representation of the minimal set as short, simple, and
 general as possible. There may be situations where these arguments
 do not apply, e.g., implementers may have specific reasons to expose
 multi-streaming as a visible functionality to applications, or the
 restrictive open/close semantics may be problematic under some
 circumstances. In such cases, the representation in Section 4
 ("reduction") should be considered.

 As in Section 3, Section 4, and [RFC8303], we categorize the minimal
 set of transport features as 1) CONNECTION related (ESTABLISHMENT,
 AVAILABILITY, MAINTENANCE, TERMINATION) and 2) DATA Transfer related
 (Sending Data, Receiving Data, Errors). Here, the focus is on
 connections that the transport system offers as an abstraction to the
 application, as opposed to connections of transport protocols that
 the transport system uses.

6.1. ESTABLISHMENT, AVAILABILITY, and TERMINATION

 A connection must first be "created" to allow for some initial
 configuration to be carried out before the transport system can
 actively or passively establish communication with a remote end
 system. As a configuration of the newly created connection, an
 application can choose to disallow usage of MPTCP. Furthermore, all
 configuration parameters in Section 6.2 can be used initially,
 although some of them may only take effect when a connection has been
 established with a chosen transport protocol. Configuring a
 connection early helps a transport system make the right decisions.
 For example, grouping information can influence whether or not the
 transport system implements a connection as a stream of a multi-
 streaming protocol’s existing association.

 For ungrouped connections, early configuration is necessary because
 it allows the transport system to know which protocols it should try
 to use. In particular, a transport system that only makes a one-time
 choice for a particular protocol must know early about strict
 requirements that must be kept, or it can end up in a deadlock
 situation (e.g., having chosen UDP and later be asked to support
 reliable transfer). As an example description of how to correctly
 handle these cases, we provide the following decision tree (this is
 derived from Section 4.1 excluding authentication, as explained in
 Section 8):

 +--+
 | Will it ever be necessary to offer any of the following? |
 | * Reliably transfer data |
 | * Notify the peer of closing/aborting |
 | * Preserve data ordering |
 +--+
 | |
 |Yes |No
 | (SCTP or TCP) | (All protocols
 | can be used.) | can be used.)
 V V
+--------------------------------------+ +-----------------------------+

Is any of the following useful to		Is any of the following
the application?		useful to the application?
* Choosing a scheduler to operate		* Specify checksum coverage
between connections in a group,		used by the sender
with the possibility to configure		* Specify minimum checksum
a priority or weight per connection		coverage required by the
* Configurable message reliability		receiver
* Unordered message delivery	+-----------------------------+	
* Request not to delay the		
acknowledgement (SACK) of a message		Yes
+--------------------------------------+ | |
 | | | |
 |Yes |No | |
 V | V V
 SCTP is | UDP-Lite is UDP is
 preferred. | preferred. preferred.
 V
+--+
| Is any of the following useful to the application? |
| * Hand over a message to reliably transfer (possibly |
| multiple times) before connection establishment |
| * Suggest timeout to the peer |
| * Notification of Excessive Retransmissions (early |
| warning below abortion threshold) |
| * Notification of ICMP error message arrival |
+--+
 | |
 |Yes |No
 V V
 TCP is preferred. SCTP and TCP
 are equally preferable.

 Note that this decision tree is not optimal for all cases. For
 example, if an application wants to use "Specify checksum coverage
 used by the sender", which is only offered by UDP-Lite, and
 "Configure priority or weight for a scheduler", which is only offered
 by SCTP, the above decision tree will always choose UDP-Lite, making
 it impossible to use SCTP’s schedulers with priorities between
 grouped connections. Also, several other factors may influence the
 decisions for or against a protocol, e.g., penetration rates, the
 ability to work through NATs, etc. We caution implementers to be
 aware of the full set of trade-offs, for which we recommend
 consulting the list in Section 4.1 when deciding how to initialize a
 connection.

 To summarize, the following parameters serve as input for the
 transport system to help it choose and configure a suitable protocol:

 Reliability: a boolean that should be set to true when any of the
 following will be useful to the application: reliably transfer
 data; notify the peer of closing/aborting; or preserve data
 ordering.

 Checksum coverage: a boolean to specify whether it will be useful to
 the application to specify checksum coverage when sending or
 receiving.

 Configure message priority: a boolean that should be set to true
 when any of the following per-message configuration or
 prioritization mechanisms will be useful to the application:
 choosing a scheduler to operate between grouped connections, with
 the possibility to configure a priority or weight per connection;
 configurable message reliability; unordered message delivery; or
 requesting not to delay the acknowledgement (SACK) of a message.

 Early message timeout notifications: a boolean that should be set to
 true when any of the following will be useful to the application:
 hand over a message to reliably transfer (possibly multiple times)
 before connection establishment; suggest timeout to the peer;
 notification of excessive retransmissions (early warning below
 abortion threshold); or notification of ICMP error message

 arrival.

 Once a connection is created, it can be queried for the maximum
 amount of data that an application can possibly expect to have
 reliably transmitted before or during transport connection
 establishment (with zero being a possible answer) (see
 Section 6.2.1). An application can also give the connection a
 message for reliable transmission before or during connection
 establishment (not UDP); the transport system will then try to
 transmit it as early as possible. An application can facilitate
 sending a message particularly early by marking it as "idempotent"
 (see Section 6.3.1); in this case, the receiving application must be
 prepared to potentially receive multiple copies of the message
 (because idempotent messages are reliably transferred, asking for
 idempotence is not necessary for systems that support UDP).

 After creation, a transport system can actively establish
 communication with a peer, or it can passively listen for incoming
 connection requests. Note that active establishment may or may not
 trigger a notification on the listening side. It is possible that
 the first notification on the listening side is the arrival of the
 first data that the active side sends (a receiver-side transport
 system could handle this by continuing to block a "Listen" call,
 immediately followed, for example, by issuing "Receive"; callback-
 based implementations could simply skip the equivalent of "Listen").
 This also means that the active opening side is assumed to be the
 first side sending data.

 A transport system can actively close a connection, i.e., terminate
 it after reliably delivering all remaining data to the peer (if
 reliable data delivery was requested earlier (not UDP)), in which
 case the peer is notified that the connection is closed.
 Alternatively, a connection can be aborted without delivering
 outstanding data to the peer. In case reliable or partially reliable
 data delivery was requested earlier (not UDP), the peer is notified
 that the connection is aborted. A timeout can be configured to abort
 a connection when data could not be delivered for too long (not UDP);
 however, timeout-based abortion does not notify the peer application
 that the connection has been aborted. Because half-closed
 connections are not supported, when a host implementing a transport
 system receives a notification that the peer is closing or aborting
 the connection (not UDP), its peer may not be able to read
 outstanding data. This means that unacknowledged data residing in a
 transport system’s send buffer may have to be dropped from that
 buffer upon arrival of a "close" or "abort" notification from the
 peer.

6.2. MAINTENANCE

 A transport system must offer means to group connections, but it
 cannot guarantee truly grouping them using the transport protocols
 that it uses (e.g., it cannot be guaranteed that connections become
 multiplexed as streams on a single SCTP association when SCTP may not
 be available). The transport system must therefore ensure that
 group- versus non-group-configurations are handled correctly in some
 way (e.g., by applying the configuration to all grouped connections
 even when they are not multiplexed, or informing the application
 about grouping success or failure).

 As a general rule, any configuration described below should be
 carried out as early as possible to aid the transport system’s
 decision making.

6.2.1. Connection Groups

 The following transport features and notifications (some directly
 from Section 4; some new or changed, based on the discussion in
 Section 5) automatically apply to all grouped connections:

 Configure a timeout (not UDP)
 This can be done with the following parameters:

 * A timeout value for aborting connections, in seconds.

 * A timeout value to be suggested to the peer (if possible), in
 seconds.

 * The number of retransmissions after which the application should
 be notified of "Excessive Retransmissions".

 Configure urgency
 This can be done with the following parameters:

 * A number to identify the type of scheduler that should be used to
 operate between connections in the group (no guarantees given).
 Schedulers are defined in [RFC8260].

 * A "capacity profile" number to identify how an application wants
 to use its available capacity. Choices can be "lowest possible
 latency at the expense of overhead" (which would disable any
 Nagle-like algorithm), "scavenger", or values that help determine
 the DSCP value for a connection.

 * A buffer limit (in bytes); when the sender has less than the
 provided limit of bytes in the buffer, the application may be
 notified. Notifications are not guaranteed, and it is optional
 for a transport system to support buffer limit values greater than
 0. Note that this limit and its notification should operate
 across the buffers of the whole transport system, i.e., also any
 potential buffers that the transport system itself may use on top
 of the transport’s send buffer.

 Following Section 5.7, these properties can be queried:

 * The maximum message size that may be sent without fragmentation
 via the configured interface. This is optional for a transport
 system to offer and may return an error ("not available"). It can
 aid applications implementing Path MTU Discovery.

 * The maximum transport message size that can be sent, in bytes.
 Irrespective of fragmentation, there is a size limit for the
 messages that can be handed over to SCTP or UDP(-Lite); because
 the service provided by a transport system is independent of the
 transport protocol, it must allow an application to query this
 value: the maximum size of a message in an Application-Framed Byte
 Stream (see Section 5.1). This may also return an error when data
 is not delimited ("not available").

 * The maximum transport message size that can be received from the
 configured interface, in bytes (or "not available").

 * The maximum amount of data that can possibly be sent before or
 during connection establishment, in bytes.

 In addition to the already mentioned closing/aborting notifications
 and possible send errors, the following notifications can occur:

 Excessive Retransmissions: The configured (or a default) number of
 retransmissions has been reached, yielding this early warning
 below an abortion threshold.

 ICMP Arrival (parameter: ICMP message): An ICMP packet carrying the
 conveyed ICMP message has arrived.

 ECN Arrival (parameter: ECN value): A packet carrying the conveyed
 Explicit Congestion Notification (ECN) value has arrived. This
 can be useful for applications implementing congestion control.

 Timeout (parameter: s seconds): Data could not be delivered for s
 seconds.

 Drain: The send buffer has either drained below the configured

 buffer limit or it has become completely empty. This is a generic
 notification that tries to enable uniform access to
 "TCP_NOTSENT_LOWAT" as well as the "SENDER DRY" notification (as
 discussed in Section 5.4; SCTP’s "SENDER DRY" is a special case
 where the threshold (for unsent data) is 0 and there is also no
 more unacknowledged data in the send buffer).

6.2.2. Individual Connections

 Configure priority or weight for a scheduler, as described in
 [RFC8260].

 Configure checksum usage: This can be done with the following
 parameters, but there is no guarantee that any checksum limitations
 will indeed be enforced (the default behavior is "full coverage,
 checksum enabled"):

 * a boolean to enable/disable usage of a checksum when sending

 * the desired coverage (in bytes) of the checksum used when sending

 * a boolean to enable/disable requiring a checksum when receiving

 * the required minimum coverage (in bytes) of the checksum when
 receiving

6.3. DATA Transfer

6.3.1. Sending Data

 When sending a message, no guarantees are given about the
 preservation of message boundaries to the peer; if message boundaries
 are needed, the receiving application at the peer must know about
 them beforehand (or the transport system cannot use TCP). Note that
 an application should already be able to hand over data before the
 transport system establishes a connection with a chosen transport
 protocol. Regarding the message that is being handed over, the
 following parameters can be used:

 Reliability: This parameter is used to convey a choice of: fully
 reliable with congestion control (not UDP), unreliable without
 congestion control, unreliable with congestion control (not UDP),
 and partially reliable with congestion control (see [RFC3758] and
 [RFC7496] for details on how to specify partial reliability) (not
 UDP). The latter two choices are optional for a transport system
 to offer and may result in full reliability. Note that
 applications sending unreliable data without congestion control
 should themselves perform congestion control in accordance with
 [RFC8085].

 Ordered (not UDP): This boolean lets an application choose between
 ordered message delivery (true) and possibly unordered,
 potentially faster message delivery (false).

 Bundle: This boolean expresses a preference for allowing to bundle
 messages (true) or not (false). No guarantees are given.

 DelAck: This boolean, if false, lets an application request that the
 peer not delay the acknowledgement for this message.

 Fragment: This boolean expresses a preference for allowing to
 fragment messages (true) or not (false), at the IP level. No
 guarantees are given.

 Idempotent (not UDP): This boolean expresses whether a message is
 idempotent (true) or not (false). Idempotent messages may arrive
 multiple times at the receiver (but they will arrive at least
 once). When data is idempotent, it can be used by the receiver
 immediately on a connection establishment attempt. Thus, if data
 is handed over before the transport system establishes a
 connection with a chosen transport protocol, stating that a

 message is idempotent facilitates transmitting it to the peer
 application particularly early.

 An application can be notified of a failure to send a specific
 message. There is no guarantee of such notifications, i.e., send
 failures can also silently occur.

6.3.2. Receiving Data

 A receiving application obtains an "Application-Framed Byte Stream"
 (AFra Byte Stream); this concept is further described in Section 5.1.
 In line with TCP’s receiver semantics, an AFra Byte Stream is just a
 stream of bytes to the receiver. If message boundaries were
 specified by the sender, a receiver-side transport system
 implementing only the minimum set of Transport Services defined here
 will still not inform the receiving application about them (this
 limitation is only needed for transport systems that are implemented
 to directly use TCP).

 Different from TCP’s semantics, if the sending application has
 allowed that messages are not fully reliably transferred, or
 delivered out of order, then such reordering or unreliability may be
 reflected per message in the arriving data. Messages will always
 stay intact, i.e., if an incomplete message is contained at the end
 of the arriving data block, this message is guaranteed to continue in
 the next arriving data block.

7. IANA Considerations

 This document has no IANA actions.

8. Security Considerations

 Authentication, confidentiality protection, and integrity protection
 are identified as transport features by [RFC8095]. Often, these
 features are provided by a protocol or layer on top of the transport
 protocol; none of the full-featured standards-track transport
 protocols in [RFC8303], which this document is based upon, provide
 all of these transport features on its own. Therefore, they are not
 considered in this document, with the exception of native
 authentication capabilities of TCP and SCTP for which the security
 considerations in [RFC5925] and [RFC4895] apply. The minimum
 requirements for a secure transport system are discussed in a
 separate document [RFC8922].

9. References

9.1. Normative References

 [RFC8095] Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,
 Ed., "Services Provided by IETF Transport Protocols and
 Congestion Control Mechanisms", RFC 8095,
 DOI 10.17487/RFC8095, March 2017,
 <https://www.rfc-editor.org/info/rfc8095>.

 [RFC8303] Welzl, M., Tuexen, M., and N. Khademi, "On the Usage of
 Transport Features Provided by IETF Transport Protocols",
 RFC 8303, DOI 10.17487/RFC8303, February 2018,
 <https://www.rfc-editor.org/info/rfc8303>.

 [RFC8922] Enghardt, T., Pauly, T., Perkins, C., Rose, K., and C.
 Wood, "A Survey of the Interaction between Security
 Protocols and Transport Services", RFC 8922,
 DOI 10.17487/RFC8922, October 2020,
 <https://www.rfc-editor.org/info/rfc8922>.

9.2. Informative References

 [COBS] Cheshire, S. and M. Baker, "Consistent overhead byte
 stuffing", IEEE/ACM Transactions on Networking, Volume 7,
 Issue 2, DOI 10.1109/90.769765, April 1999,

 <https://doi.org/10.1109/90.769765>.

 [POSIX] The Open Group, "IEEE Standard for Information
 Technology--Portable Operating System Interface (POSIX(R))
 Base Specifications, Issue 7", (Revision of IEEE Std
 1003.1-2008), IEEE Std 1003.1-2017, January 2018,
 <https://www.opengroup.org/onlinepubs/9699919799/
 functions/contents.html>.

 [RFC3758] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
 Conrad, "Stream Control Transmission Protocol (SCTP)
 Partial Reliability Extension", RFC 3758,
 DOI 10.17487/RFC3758, May 2004,
 <https://www.rfc-editor.org/info/rfc3758>.

 [RFC4895] Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
 "Authenticated Chunks for the Stream Control Transmission
 Protocol (SCTP)", RFC 4895, DOI 10.17487/RFC4895, August
 2007, <https://www.rfc-editor.org/info/rfc4895>.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <https://www.rfc-editor.org/info/rfc4987>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <https://www.rfc-editor.org/info/rfc5925>.

 [RFC6897] Scharf, M. and A. Ford, "Multipath TCP (MPTCP) Application
 Interface Considerations", RFC 6897, DOI 10.17487/RFC6897,
 March 2013, <https://www.rfc-editor.org/info/rfc6897>.

 [RFC7305] Lear, E., Ed., "Report from the IAB Workshop on Internet
 Technology Adoption and Transition (ITAT)", RFC 7305,
 DOI 10.17487/RFC7305, July 2014,
 <https://www.rfc-editor.org/info/rfc7305>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7496] Tuexen, M., Seggelmann, R., Stewart, R., and S. Loreto,
 "Additional Policies for the Partially Reliable Stream
 Control Transmission Protocol Extension", RFC 7496,
 DOI 10.17487/RFC7496, April 2015,
 <https://www.rfc-editor.org/info/rfc7496>.

 [RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
 March 2017, <https://www.rfc-editor.org/info/rfc8085>.

 [RFC8260] Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann,
 "Stream Schedulers and User Message Interleaving for the
 Stream Control Transmission Protocol", RFC 8260,
 DOI 10.17487/RFC8260, November 2017,
 <https://www.rfc-editor.org/info/rfc8260>.

 [RFC8304] Fairhurst, G. and T. Jones, "Transport Features of the
 User Datagram Protocol (UDP) and Lightweight UDP (UDP-
 Lite)", RFC 8304, DOI 10.17487/RFC8304, February 2018,
 <https://www.rfc-editor.org/info/rfc8304>.

 [RFC8622] Bless, R., "A Lower-Effort Per-Hop Behavior (LE PHB) for
 Differentiated Services", RFC 8622, DOI 10.17487/RFC8622,
 June 2019, <https://www.rfc-editor.org/info/rfc8622>.

 [SCTP-STREAM-1]
 Weinrank, F. and M. Tuexen, "Transparent Flow Mapping for
 NEAT", IFIP Networking 2017, Workshop on Future of
 Internet Transport (FIT 2017), June 2017.

 [SCTP-STREAM-2]
 Welzl, M., Niederbacher, F., and S. Gjessing, "Beneficial
 Transparent Deployment of SCTP: The Missing Pieces", IEEE
 GlobeCom 2011, DOI 10.1109/GLOCOM.2011.6133554, December
 2011, <https://doi.org/10.1109/GLOCOM.2011.6133554>.

 [TAPS-INTERFACE]
 Trammell, B., Welzl, M., Enghardt, T., Fairhurst, G.,
 Kuehlewind, M., Perkins, C., Tiesel, P. S., Wood, C. A.,
 and T. Pauly, "An Abstract Application Layer Interface to
 Transport Services", Work in Progress, Internet-Draft,
 draft-ietf-taps-interface-09, 27 July 2020,
 <https://tools.ietf.org/html/draft-ietf-taps-interface-
 09>.

 [WWDC2015] Lakhera, P. and S. Cheshire, "Your App and Next Generation
 Networks", Apple Worldwide Developers Conference 2015, San
 Francisco, USA, June 2015,
 <https://developer.apple.com/videos/wwdc/2015/?id=719>.

Appendix A. The Superset of Transport Features

 In this description, transport features are presented following the
 nomenclature "CATEGORY.[SUBCATEGORY].FEATURENAME.PROTOCOL",
 equivalent to "pass 2" in [RFC8303]. We also sketch how functional
 or optimizing transport features can be implemented by a transport
 system. The "minimal set" derived in this document is meant to be
 implementable "one-sided" over TCP and, with limitations, UDP.
 Hence, for all transport features that are categorized as
 "functional" or "optimizing", and for which no matching TCP and/or
 UDP primitive exists in "pass 2" of [RFC8303], a brief discussion on
 how to implement them over TCP and/or UDP is included.

 We designate some transport features as "automatable" on the basis of
 a broader decision that affects multiple transport features:

 * Most transport features that are related to multi-streaming were
 designated as "automatable". This was done because the decision
 on whether or not to use multi-streaming does not depend on
 application-specific knowledge. This means that a connection that
 is exhibited to an application could be implemented by using a
 single stream of an SCTP association instead of mapping it to a
 complete SCTP association or TCP connection. This could be
 achieved by using more than one stream when an SCTP association is
 first established (CONNECT.SCTP parameter "outbound stream
 count"), maintaining an internal stream number, and using this
 stream number when sending data (SEND.SCTP parameter "stream
 number"). Closing or aborting a connection could then simply free
 the stream number for future use. This is discussed further in
 Section 5.2.

 * With the exception of "Disable MPTCP", all transport features that
 are related to using multiple paths or the choice of the network
 interface were designated as "automatable". For example, "Listen"
 could always listen on all available interfaces and "Connect"
 could use the default interface for the destination IP address.

 Finally, in three cases, transport features are aggregated and/or
 slightly changed from [RFC8303] in the description below. These
 transport features are marked as "CHANGED FROM RFC 8303". These do
 not add any new functionality but just represent a simple refactoring
 step that helps to streamline the derivation process (e.g., by
 removing a choice of a parameter for the sake of applications that
 may not care about this choice). The corresponding transport
 features are automatable, and they are listed immediately below the
 "CHANGED FROM RFC 8303" transport feature.

A.1. CONNECTION-Related Transport Features

 ESTABLISHMENT:

 * Connect

 Protocols: TCP, SCTP, UDP(-Lite)

 Functional because the notion of a connection is often reflected
 in applications as an expectation to be able to communicate after
 a "Connect" succeeded, with a communication sequence relating to
 this transport feature that is defined by the application
 protocol.

 Implementation: via CONNECT.TCP, CONNECT.SCTP or CONNECT.UDP(-
 Lite).

 * Specify which IP Options must always be used

 Protocols: TCP, UDP(-Lite)

 Automatable because IP Options relate to knowledge about the
 network, not the application.

 * Request multiple streams

 Protocols: SCTP

 Automatable because using multi-streaming does not require
 application-specific knowledge (example implementations of using
 multi-streaming without involving the application are described in
 [SCTP-STREAM-1] and [SCTP-STREAM-2]).

 Implementation: see Section 5.2.

 * Limit the number of inbound streams

 Protocols: SCTP

 Automatable because using multi-streaming does not require
 application-specific knowledge.

 Implementation: see Section 5.2.

 * Specify number of attempts and/or timeout for the first
 establishment message

 Protocols: TCP, SCTP

 Functional because this is closely related to potentially assumed
 reliable data delivery for data that is sent before or during
 connection establishment.

 Implementation: using a parameter of CONNECT.TCP and CONNECT.SCTP.

 Implementation over UDP: do nothing (this is irrelevant in the
 case of UDP because there, reliable data delivery is not assumed).

 * Obtain multiple sockets

 Protocols: SCTP

 Automatable because the non-parallel usage of multiple paths to
 communicate between the same end hosts relates to knowledge about
 the network, not the application.

 * Disable MPTCP

 Protocols: MPTCP

 Optimizing because the parallel usage of multiple paths to
 communicate between the same end hosts can improve performance.
 Whether or not to use this feature depends on knowledge about the
 network as well as application-specific knowledge (see Section 3.1
 of [RFC6897]).

 Implementation: via a boolean parameter in CONNECT.MPTCP.

 Implementation over TCP: do nothing.

 Implementation over UDP: do nothing.

 * Configure authentication

 Protocols: TCP, SCTP

 Functional because this has a direct influence on security.

 Implementation: via parameters in CONNECT.TCP and CONNECT.SCTP.
 With TCP, this allows configuring Master Key Tuples (MKTs) to
 authenticate complete segments (including the TCP IPv4
 pseudoheader, TCP header, and TCP data). With SCTP, this allows
 specifying which chunk types must always be authenticated.
 Authenticating only certain chunk types creates a reduced level of
 security that is not supported by TCP; to be compatible, this
 should therefore only allow to authenticate all chunk types. Key
 material must be provided in a way that is compatible with both
 [RFC4895] and [RFC5925].

 Implementation over UDP: not possible (UDP does not offer this
 functionality).

 * Indicate (and/or obtain upon completion) an Adaptation Layer via
 an adaptation code point

 Protocols: SCTP

 Functional because it allows sending extra data for the sake of
 identifying an adaptation layer, which by itself is application
 specific.

 Implementation: via a parameter in CONNECT.SCTP.

 Implementation over TCP: not possible. (TCP does not offer this
 functionality.)

 Implementation over UDP: not possible. (UDP does not offer this
 functionality.)

 * Request to negotiate interleaving of user messages

 Protocols: SCTP

 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable.

 Implementation: controlled via a parameter in CONNECT.SCTP. One
 possible implementation is to always try to enable interleaving.

 * Hand over a message to reliably transfer (possibly multiple times)
 before connection establishment

 Protocols: TCP

 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.

 Implementation: via a parameter in CONNECT.TCP.

 Implementation over UDP: not possible. (UDP does not provide
 reliability.)

 * Hand over a message to reliably transfer during connection
 establishment

 Protocols: SCTP

 Functional because this can only work if the message is limited in
 size, making it closely tied to properties of the data that an
 application sends or expects to receive.

 Implementation: via a parameter in CONNECT.SCTP.

 Implementation over TCP: transmit the message with the SYN packet,
 sacrificing the ability to identify message boundaries.

 Implementation over UDP: not possible. (UDP is unreliable.)

 * Enable UDP encapsulation with a specified remote UDP port number

 Protocols: SCTP

 Automatable because UDP encapsulation relates to knowledge about
 the network, not the application.

 AVAILABILITY:

 * Listen

 Protocols: TCP, SCTP, UDP(-Lite)

 Functional because the notion of accepting connection requests is
 often reflected in applications as an expectation to be able to
 communicate after a "Listen" succeeded, with a communication
 sequence relating to this transport feature that is defined by the
 application protocol.

 CHANGED FROM RFC 8303. This differs from the 3 automatable
 transport features below in that it leaves the choice of
 interfaces for listening open.

 Implementation: by listening on all interfaces via LISTEN.TCP (not
 providing a local IP address) or LISTEN.SCTP (providing SCTP port
 number / address pairs for all local IP addresses). LISTEN.UDP(-
 Lite) supports both methods.

 * Listen, 1 specified local interface

 Protocols: TCP, SCTP, UDP(-Lite)

 Automatable because decisions about local interfaces relate to
 knowledge about the network and the Operating System, not the
 application.

 * Listen, N specified local interfaces

 Protocols: SCTP

 Automatable because decisions about local interfaces relate to
 knowledge about the network and the Operating System, not the
 application.

 * Listen, all local interfaces

 Protocols: TCP, SCTP, UDP(-Lite)

 Automatable because decisions about local interfaces relate to
 knowledge about the network and the Operating System, not the
 application.

 * Specify which IP Options must always be used

 Protocols: TCP, UDP(-Lite)

 Automatable because IP Options relate to knowledge about the
 network, not the application.

 * Disable MPTCP

 Protocols: MPTCP

 Optimizing because the parallel usage of multiple paths to
 communicate between the same end hosts can improve performance.
 Whether or not to use this feature depends on knowledge about the
 network as well as application-specific knowledge (see Section 3.1
 of [RFC6897]).

 Implementation: via a boolean parameter in LISTEN.MPTCP.

 Implementation over TCP: do nothing.

 Implementation over UDP: do nothing.

 * Configure authentication

 Protocols: TCP, SCTP

 Functional because this has a direct influence on security.

 Implementation: via parameters in LISTEN.TCP and LISTEN.SCTP.

 Implementation over TCP: with TCP, this allows configuring Master
 Key Tuples (MKTs) to authenticate complete segments (including the
 TCP IPv4 pseudoheader, TCP header, and TCP data). With SCTP, this
 allows specifying which chunk types must always be authenticated.
 Authenticating only certain chunk types creates a reduced level of
 security that is not supported by TCP; to be compatible, this
 should therefore only allow to authenticate all chunk types. Key
 material must be provided in a way that is compatible with both
 [RFC4895] and [RFC5925].

 Implementation over UDP: not possible. (UDP does not offer
 authentication.)

 * Obtain requested number of streams

 Protocols: SCTP

 Automatable because using multi-streaming does not require
 application-specific knowledge.

 Implementation: see Section 5.2.

 * Limit the number of inbound streams

 Protocols: SCTP

 Automatable because using multi-streaming does not require
 application-specific knowledge.

 Implementation: see Section 5.2.

 * Indicate (and/or obtain upon completion) an Adaptation Layer via
 an adaptation code point

 Protocols: SCTP

 Functional because it allows sending extra data for the sake of
 identifying an adaptation layer, which by itself is application
 specific.

 Implementation: via a parameter in LISTEN.SCTP.

 Implementation over TCP: not possible. (TCP does not offer this
 functionality.)

 Implementation over UDP: not possible. (UDP does not offer this

 functionality.)

 * Request to negotiate interleaving of user messages

 Protocols: SCTP

 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable.

 Implementation: via a parameter in LISTEN.SCTP.

 MAINTENANCE:

 * Change timeout for aborting connection (using retransmit limit or
 time value)

 Protocols: TCP, SCTP

 Functional because this is closely related to potentially assumed
 reliable data delivery.

 Implementation: via CHANGE_TIMEOUT.TCP or CHANGE_TIMEOUT.SCTP.

 Implementation over UDP: not possible. (UDP is unreliable and
 there is no connection timeout.)

 * Suggest timeout to the peer

 Protocols: TCP

 Functional because this is closely related to potentially assumed
 reliable data delivery.

 Implementation: via CHANGE_TIMEOUT.TCP.

 Implementation over UDP: not possible. (UDP is unreliable and
 there is no connection timeout.)

 * Disable Nagle algorithm

 Protocols: TCP, SCTP

 Optimizing because this decision depends on knowledge about the
 size of future data blocks and the delay between them.

 Implementation: via DISABLE_NAGLE.TCP and DISABLE_NAGLE.SCTP.

 Implementation over UDP: do nothing (UDP does not implement the
 Nagle algorithm).

 * Request an immediate heartbeat, returning success/failure

 Protocols: SCTP

 Automatable because this informs about network-specific knowledge.

 * Notification of Excessive Retransmissions (early warning below
 abortion threshold)

 Protocols: TCP

 Optimizing because it is an early warning to the application,
 informing it of an impending functional event.

 Implementation: via ERROR.TCP.

 Implementation over UDP: do nothing (there is no abortion
 threshold).

 * Add path

 Protocols: MPTCP, SCTP

 MPTCP Parameters: source-IP; source-Port; destination-IP;
 destination-Port

 SCTP Parameters: local IP address

 Automatable because the choice of paths to communicate between the
 same end hosts relates to knowledge about the network, not the
 application.

 * Remove path

 Protocols: MPTCP, SCTP

 MPTCP Parameters: source-IP; source-Port; destination-IP;
 destination-Port

 SCTP Parameters: local IP address

 Automatable because the choice of paths to communicate between the
 same end host relates to knowledge about the network, not the
 application.

 * Set primary path

 Protocols: SCTP

 Automatable because the choice of paths to communicate between the
 same end hosts relates to knowledge about the network, not the
 application.

 * Suggest primary path to the peer

 Protocols: SCTP

 Automatable because the choice of paths to communicate between the
 same end hosts relates to knowledge about the network, not the
 application.

 * Configure Path Switchover

 Protocols: SCTP

 Automatable because the choice of paths to communicate between the
 same end hosts relates to knowledge about the network, not the
 application.

 * Obtain status (query or notification)

 Protocols: SCTP, MPTCP

 SCTP parameters: association connection state; destination
 transport address list; destination transport address reachability
 states; current local and peer receiver window size; current local
 congestion window sizes; number of unacknowledged DATA chunks;
 number of DATA chunks pending receipt; primary path; most recent
 SRTT on primary path; RTO on primary path; SRTT and RTO on other
 destination addresses; MTU per path; interleaving supported yes/no

 MPTCP parameters: subflow-list (identified by source-IP; source-
 Port; destination-IP; destination-Port)

 Automatable because these parameters relate to knowledge about the
 network, not the application.

 * Specify DSCP field

 Protocols: TCP, SCTP, UDP(-Lite)

 Optimizing because choosing a suitable DSCP value requires
 application-specific knowledge.

 Implementation: via SET_DSCP.TCP / SET_DSCP.SCTP / SET_DSCP.UDP(-
 Lite).

 * Notification of ICMP error message arrival

 Protocols: TCP, UDP(-Lite)

 Optimizing because these messages can inform about success or
 failure of functional transport features (e.g., host unreachable
 relates to "Connect").

 Implementation: via ERROR.TCP or ERROR.UDP(-Lite.)

 * Obtain information about interleaving support

 Protocols: SCTP

 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable.

 Implementation: via STATUS.SCTP.

 * Change authentication parameters

 Protocols: TCP, SCTP

 Functional because this has a direct influence on security.

 Implementation: via SET_AUTH.TCP and SET_AUTH.SCTP.

 Implementation over TCP: with SCTP, this allows adjusting key_id,
 key, and hmac_id. With TCP, this allows changing the preferred
 outgoing MKT (current_key) and the preferred incoming MKT
 (rnext_key), respectively, for a segment that is sent on the
 connection. Key material must be provided in a way that is
 compatible with both [RFC4895] and [RFC5925].

 Implementation over UDP: not possible. (UDP does not offer
 authentication.)

 * Obtain authentication information

 Protocols: SCTP

 Functional because authentication decisions may have been made by
 the peer, and this has an influence on the necessary application-
 level measures to provide a certain level of security.

 Implementation: via GET_AUTH.SCTP.

 Implementation over TCP: with SCTP, this allows obtaining key_id
 and a chunk list. With TCP, this allows obtaining current_key and
 rnext_key from a previously received segment. Key material must
 be provided in a way that is compatible with both [RFC4895] and
 [RFC5925].

 Implementation over UDP: not possible. (UDP does not offer
 authentication.)

 * Reset Stream

 Protocols: SCTP

 Automatable because using multi-streaming does not require
 application-specific knowledge.

 Implementation: see Section 5.2.

 * Notification of Stream Reset

 Protocols: SCTP

 Automatable because using multi-streaming does not require
 application-specific knowledge.

 Implementation: see Section 5.2.

 * Reset Association

 Protocols: SCTP

 Automatable because deciding to reset an association does not
 require application-specific knowledge.

 Implementation: via RESET_ASSOC.SCTP.

 * Notification of Association Reset

 Protocols: SCTP

 Automatable because this notification does not relate to
 application-specific knowledge.

 * Add Streams

 Protocols: SCTP

 Automatable because using multi-streaming does not require
 application-specific knowledge.

 Implementation: see Section 5.2.

 * Notification of Added Stream

 Protocols: SCTP

 Automatable because using multi-streaming does not require
 application-specific knowledge.

 Implementation: see Section 5.2.

 * Choose a scheduler to operate between streams of an association

 Protocols: SCTP

 Optimizing because the scheduling decision requires application-
 specific knowledge. However, if a transport system would not use
 this, or wrongly configure it on its own, this would only affect
 the performance of data transfers; the outcome would still be
 correct within the "best effort" service model.

 Implementation: using SET_STREAM_SCHEDULER.SCTP.

 Implementation over TCP: do nothing (streams are not available in
 TCP, but no guarantee is given that this transport feature has any
 effect).

 Implementation over UDP: do nothing (streams are not available in
 UDP, but no guarantee is given that this transport feature has any
 effect).

 * Configure priority or weight for a scheduler

 Protocols: SCTP

 Optimizing because the priority or weight requires application-
 specific knowledge. However, if a transport system would not use
 this, or wrongly configure it on its own, this would only affect

 the performance of data transfers; the outcome would still be
 correct within the "best effort" service model.

 Implementation: using CONFIGURE_STREAM_SCHEDULER.SCTP.

 Implementation over TCP: do nothing (streams are not available in
 TCP, but no guarantee is given that this transport feature has any
 effect).

 Implementation over UDP: do nothing (streams are not available in
 UDP, but no guarantee is given that this transport feature has any
 effect).

 * Configure send buffer size

 Protocols: SCTP

 Automatable because this decision relates to knowledge about the
 network and the Operating System, not the application (see also
 the discussion in Section 5.4).

 * Configure receive buffer (and rwnd) size

 Protocols: SCTP

 Automatable because this decision relates to knowledge about the
 network and the Operating System, not the application.

 * Configure message fragmentation

 Protocols: SCTP

 Automatable because this relates to knowledge about the network
 and the Operating System, not the application. Note that this
 SCTP feature does not control IP-level fragmentation, but decides
 on fragmentation of messages by SCTP, in the end system.

 Implementation: done by always enabling it with
 CONFIG_FRAGMENTATION.SCTP and auto-setting the fragmentation size
 based on network or Operating System conditions.

 * Configure PMTUD

 Protocols: SCTP

 Automatable because Path MTU Discovery relates to knowledge about
 the network, not the application.

 * Configure delayed SACK timer

 Protocols: SCTP

 Automatable because the receiver-side decision to delay sending
 SACKs relates to knowledge about the network, not the application
 (it can be relevant for a sending application to request not to
 delay the SACK of a message, but this is a different transport
 feature).

 * Set Cookie life value

 Protocols: SCTP

 Functional because it relates to security (possibly weakened by
 keeping a cookie very long) versus the time between connection
 establishment attempts. Knowledge about both issues can be
 application specific.

 Implementation over TCP: the closest specified TCP functionality
 is the cookie in TCP Fast Open; for this, [RFC7413] states that
 the server "can expire the cookie at any time to enhance
 security", and Section 4.1.2 of [RFC7413] describes an example

 implementation where updating the key on the server side causes
 the cookie to expire. Alternatively, for implementations that do
 not support TCP Fast Open, this transport feature could also
 affect the validity of SYN cookies (see Section 3.6 of [RFC4987]).

 Implementation over UDP: not possible. (UDP does not offer this
 functionality.)

 * Set maximum burst

 Protocols: SCTP

 Automatable because it relates to knowledge about the network, not
 the application.

 * Configure size where messages are broken up for partial delivery

 Protocols: SCTP

 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.

 Implementation over TCP: not possible. (TCP does not offer
 identification of message boundaries.)

 Implementation over UDP: not possible. (UDP does not fragment
 messages.)

 * Disable checksum when sending

 Protocols: UDP

 Functional because application-specific knowledge is necessary to
 decide whether it can be acceptable to lose data integrity with
 respect to random corruption.

 Implementation: via SET_CHECKSUM_ENABLED.UDP.

 Implementation over TCP: do nothing (TCP does not offer to disable
 the checksum, but transmitting data with an intact checksum will
 not yield a semantically wrong result).

 * Disable checksum requirement when receiving

 Protocols: UDP

 Functional because application-specific knowledge is necessary to
 decide whether it can be acceptable to lose data integrity with
 respect to random corruption.

 Implementation: via SET_CHECKSUM_REQUIRED.UDP.

 Implementation over TCP: do nothing (TCP does not offer to disable
 the checksum, but transmitting data with an intact checksum will
 not yield a semantically wrong result).

 * Specify checksum coverage used by the sender

 Protocols: UDP-Lite

 Functional because application-specific knowledge is necessary to
 decide for which parts of the data it can be acceptable to lose
 data integrity with respect to random corruption.

 Implementation: via SET_CHECKSUM_COVERAGE.UDP-Lite.

 Implementation over TCP: do nothing (TCP does not offer to limit
 the checksum length, but transmitting data with an intact checksum
 will not yield a semantically wrong result).

 Implementation over UDP: if checksum coverage is set to cover

 payload data, do nothing. Else, either do nothing (transmitting
 data with an intact checksum will not yield a semantically wrong
 result), or use the transport feature "Disable checksum when
 sending".

 * Specify minimum checksum coverage required by receiver

 Protocols: UDP-Lite

 Functional because application-specific knowledge is necessary to
 decide for which parts of the data it can be acceptable to lose
 data integrity with respect to random corruption.

 Implementation: via SET_MIN_CHECKSUM_COVERAGE.UDP-Lite.

 Implementation over TCP: do nothing (TCP does not offer to limit
 the checksum length, but transmitting data with an intact checksum
 will not yield a semantically wrong result).

 Implementation over UDP: if checksum coverage is set to cover
 payload data, do nothing. Else, either do nothing (transmitting
 data with an intact checksum will not yield a semantically wrong
 result), or use the transport feature "Disable checksum
 requirement when receiving".

 * Specify DF field

 Protocols: UDP(-Lite)

 Optimizing because the DF field can be used to carry out Path MTU
 Discovery, which can lead an application to choose message sizes
 that can be transmitted more efficiently.

 Implementation: via MAINTENANCE.SET_DF.UDP(-Lite) and
 SEND_FAILURE.UDP(-Lite).

 Implementation over TCP: do nothing (with TCP, the sending
 application is not in control of transport message sizes, making
 this functionality irrelevant).

 * Get max. transport-message size that may be sent using a non-
 fragmented IP packet from the configured interface

 Protocols: UDP(-Lite)

 Optimizing because this can lead an application to choose message
 sizes that can be transmitted more efficiently.

 Implementation over TCP: do nothing (this information is not
 available with TCP).

 * Get max. transport-message size that may be received from the
 configured interface

 Protocols: UDP(-Lite)

 Optimizing because this can, for example, influence an
 application’s memory management.

 Implementation over TCP: do nothing (this information is not
 available with TCP).

 * Specify TTL/Hop count field

 Protocols: UDP(-Lite)

 Automatable because a transport system can use a large enough
 system default to avoid communication failures. Allowing an
 application to configure it differently can produce notifications
 of ICMP error message arrivals that yield information that only
 relates to knowledge about the network, not the application.

 * Obtain TTL/Hop count field

 Protocols: UDP(-Lite)

 Automatable because the TTL/Hop count field relates to knowledge
 about the network, not the application.

 * Specify ECN field

 Protocols: UDP(-Lite)

 Automatable because the ECN field relates to knowledge about the
 network, not the application.

 * Obtain ECN field

 Protocols: UDP(-Lite)

 Optimizing because this information can be used by an application
 to better carry out congestion control (this is relevant when
 choosing a data transmission Transport Service that does not
 already do congestion control).

 Implementation over TCP: do nothing (this information is not
 available with TCP).

 * Specify IP Options

 Protocols: UDP(-Lite)

 Automatable because IP Options relate to knowledge about the
 network, not the application.

 * Obtain IP Options

 Protocols: UDP(-Lite)

 Automatable because IP Options relate to knowledge about the
 network, not the application.

 * Enable and configure a "Low Extra Delay Background Transfer"

 Protocols: a protocol implementing the LEDBAT congestion control
 mechanism

 Optimizing because whether this feature is appropriate or not
 depends on application-specific knowledge. However, wrongly using
 this will only affect the speed of data transfers (albeit
 including other transfers that may compete with the transport
 system’s transfer in the network), so it is still correct within
 the "best effort" service model.

 Implementation: via CONFIGURE.LEDBAT and/or SET_DSCP.TCP /
 SET_DSCP.SCTP / SET_DSCP.UDP(-Lite) [RFC8622].

 Implementation over TCP: do nothing (TCP does not support LEDBAT
 congestion control, but not implementing this functionality will
 not yield a semantically wrong behavior).

 Implementation over UDP: do nothing (UDP does not offer congestion
 control).

 TERMINATION:

 * Close after reliably delivering all remaining data, causing an
 event informing the application on the other side

 Protocols: TCP, SCTP

 Functional because the notion of a connection is often reflected

 in applications as an expectation to have all outstanding data
 delivered and no longer be able to communicate after a "Close"
 succeeded, with a communication sequence relating to this
 transport feature that is defined by the application protocol.

 Implementation: via CLOSE.TCP and CLOSE.SCTP.

 Implementation over UDP: not possible. (UDP is unreliable and
 hence does not know when all remaining data is delivered; it does
 also not offer to cause an event related to closing at the peer.)

 * Abort without delivering remaining data, causing an event
 informing the application on the other side

 Protocols: TCP, SCTP

 Functional because the notion of a connection is often reflected
 in applications as an expectation to potentially not have all
 outstanding data delivered and no longer be able to communicate
 after an "Abort" succeeded. On both sides of a connection, an
 application protocol may define a communication sequence relating
 to this transport feature.

 Implementation: via ABORT.TCP and ABORT.SCTP.

 Implementation over UDP: not possible. (UDP does not offer to
 cause an event related to aborting at the peer.)

 * Abort without delivering remaining data, not causing an event
 informing the application on the other side

 Protocols: UDP(-Lite)

 Functional because the notion of a connection is often reflected
 in applications as an expectation to potentially not have all
 outstanding data delivered and no longer be able to communicate
 after an "Abort" succeeded. On both sides of a connection, an
 application protocol may define a communication sequence relating
 to this transport feature.

 Implementation: via ABORT.UDP(-Lite).

 Implementation over TCP: stop using the connection, wait for a
 timeout.

 * Timeout event when data could not be delivered for too long

 Protocols: TCP, SCTP

 Functional because this notifies that potentially assumed reliable
 data delivery is no longer provided.

 Implementation: via TIMEOUT.TCP and TIMEOUT.SCTP.

 Implementation over UDP: do nothing (this event will not occur
 with UDP).

A.2. DATA-Transfer-Related Transport Features

A.2.1. Sending Data

 * Reliably transfer data, with congestion control

 Protocols: TCP, SCTP

 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.

 Implementation: via SEND.TCP and SEND.SCTP.

 Implementation over UDP: not possible. (UDP is unreliable.)

 * Reliably transfer a message, with congestion control

 Protocols: SCTP

 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.

 Implementation: via SEND.SCTP.

 Implementation over TCP: via SEND.TCP. With SEND.TCP, message
 boundaries will not be identifiable by the receiver, because TCP
 provides a byte-stream service.

 Implementation over UDP: not possible. (UDP is unreliable.)

 * Unreliably transfer a message

 Protocols: SCTP, UDP(-Lite)

 Optimizing because only applications know about the time
 criticality of their communication, and reliably transferring a
 message is never incorrect for the receiver of a potentially
 unreliable data transfer, it is just slower.

 CHANGED FROM RFC 8303. This differs from the 2 automatable
 transport features below in that it leaves the choice of
 congestion control open.

 Implementation: via SEND.SCTP or SEND.UDP(-Lite).

 Implementation over TCP: use SEND.TCP. With SEND.TCP, messages
 will be sent reliably, and message boundaries will not be
 identifiable by the receiver.

 * Unreliably transfer a message, with congestion control

 Protocols: SCTP

 Automatable because congestion control relates to knowledge about
 the network, not the application.

 * Unreliably transfer a message, without congestion control

 Protocols: UDP(-Lite)

 Automatable because congestion control relates to knowledge about
 the network, not the application.

 * Configurable Message Reliability

 Protocols: SCTP

 Optimizing because only applications know about the time
 criticality of their communication, and reliably transferring a
 message is never incorrect for the receiver of a potentially
 unreliable data transfer, it is just slower.

 Implementation: via SEND.SCTP.

 Implementation over TCP: done by using SEND.TCP and ignoring this
 configuration. Based on the assumption of the best-effort service
 model, unnecessarily delivering data does not violate application
 expectations. Moreover, it is not possible to associate the
 requested reliability to a "message" in TCP anyway.

 Implementation over UDP: not possible. (UDP is unreliable.)

 * Choice of stream

 Protocols: SCTP

 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable.

 Implementation: see Section 5.2.

 * Choice of path (destination address)

 Protocols: SCTP

 Automatable because it requires using multiple sockets, but
 obtaining multiple sockets in the CONNECTION.ESTABLISHMENT
 category is automatable.

 * Ordered message delivery (potentially slower than unordered)

 Protocols: SCTP

 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.

 Implementation: via SEND.SCTP.

 Implementation over TCP: done by using SEND.TCP. With SEND.TCP,
 messages will not be identifiable by the receiver.

 Implementation over UDP: not possible. (UDP does not offer any
 guarantees regarding ordering.)

 * Unordered message delivery (potentially faster than ordered)

 Protocols: SCTP, UDP(-Lite)

 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.

 Implementation: via SEND.SCTP.

 Implementation over TCP: done by using SEND.TCP and always sending
 data ordered. Based on the assumption of the best-effort service
 model, ordered delivery may just be slower and does not violate
 application expectations. Moreover, it is not possible to
 associate the requested delivery order to a "message" in TCP
 anyway.

 * Request not to bundle messages

 Protocols: SCTP

 Optimizing because this decision depends on knowledge about the
 size of future data blocks and the delay between them.

 Implementation: via SEND.SCTP.

 Implementation over TCP: done by using SEND.TCP and
 DISABLE_NAGLE.TCP to disable the Nagle algorithm when the request
 is made and enable it again when the request is no longer made.
 Note that this is not fully equivalent because it relates to the
 time of issuing the request rather than a specific message.

 Implementation over UDP: do nothing (UDP never bundles messages).

 * Specifying a "payload protocol-id" (handed over as such by the
 receiver)

 Protocols: SCTP

 Functional because it allows sending extra application data with
 every message, for the sake of identification of data, which by
 itself is application specific.

 Implementation: SEND.SCTP.

 Implementation over TCP: not possible. (This functionality is not
 available in TCP.)

 Implementation over UDP: not possible. (This functionality is not
 available in UDP.)

 * Specifying a key id to be used to authenticate a message

 Protocols: SCTP

 Functional because this has a direct influence on security.

 Implementation: via a parameter in SEND.SCTP.

 Implementation over TCP: this could be emulated by using
 SET_AUTH.TCP before and after the message is sent. Note that this
 is not fully equivalent because it relates to the time of issuing
 the request rather than a specific message.

 Implementation over UDP: not possible. (UDP does not offer
 authentication.)

 * Request not to delay the acknowledgement (SACK) of a message

 Protocols: SCTP

 Optimizing because only an application knows for which message it
 wants to quickly be informed about success/failure of its
 delivery.

 Implementation over TCP: do nothing (TCP does not offer this
 functionality, but ignoring this request from the application will
 not yield a semantically wrong behavior).

 Implementation over UDP: do nothing (UDP does not offer this
 functionality, but ignoring this request from the application will
 not yield a semantically wrong behavior).

A.2.2. Receiving Data

 * Receive data (with no message delimiting)

 Protocols: TCP

 Functional because a transport system must be able to send and
 receive data.

 Implementation: via RECEIVE.TCP.

 Implementation over UDP: do nothing (UDP only works on messages;
 these can be handed over, the application can still ignore the
 message boundaries).

 * Receive a message

 Protocols: SCTP, UDP(-Lite)

 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.

 Implementation: via RECEIVE.SCTP and RECEIVE.UDP(-Lite).

 Implementation over TCP: not possible. (TCP does not support
 identification of message boundaries.)

 * Choice of stream to receive from

 Protocols: SCTP

 Automatable because it requires using multiple streams, but
 requesting multiple streams in the CONNECTION.ESTABLISHMENT
 category is automatable.

 Implementation: see Section 5.2.

 * Information about partial message arrival

 Protocols: SCTP

 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.

 Implementation: via RECEIVE.SCTP.

 Implementation over TCP: do nothing (this information is not
 available with TCP).

 Implementation over UDP: do nothing (this information is not
 available with UDP).

A.2.3. Errors

 This section describes sending failures that are associated with a
 specific call to in the "Sending Data" category (Appendix A.2.1).

 * Notification of send failures

 Protocols: SCTP, UDP(-Lite)

 Functional because this notifies that potentially assumed reliable
 data delivery is no longer provided.

 CHANGED FROM RFC 8303. This differs from the 2 automatable
 transport features below in that it does not distinguish between
 unsent and unacknowledged messages.

 Implementation: via SENDFAILURE-EVENT.SCTP and SEND_FAILURE.UDP(-
 Lite).

 Implementation over TCP: do nothing (this notification is not
 available and will therefore not occur with TCP).

 * Notification of an unsent (part of a) message

 Protocols: SCTP, UDP(-Lite)

 Automatable because the distinction between unsent and
 unacknowledged does not relate to application-specific knowledge.

 * Notification of an unacknowledged (part of a) message

 Protocols: SCTP

 Automatable because the distinction between unsent and
 unacknowledged does not relate to application-specific knowledge.

 * Notification that the stack has no more user data to send

 Protocols: SCTP

 Optimizing because reacting to this notification requires the
 application to be involved, and ensuring that the stack does not
 run dry of data (for too long) can improve performance.

 Implementation over TCP: do nothing (see the discussion in
 Section 5.4).

 Implementation over UDP: do nothing (this notification is not
 available and will therefore not occur with UDP).

 * Notification to a receiver that a partial message delivery has
 been aborted

 Protocols: SCTP

 Functional because this is closely tied to properties of the data
 that an application sends or expects to receive.

 Implementation over TCP: do nothing (this notification is not
 available and will therefore not occur with TCP).

 Implementation over UDP: do nothing (this notification is not
 available and will therefore not occur with UDP).

Acknowledgements

 The authors would like to thank all the participants of the TAPS
 Working Group and the NEAT and MAMI research projects for valuable
 input to this document. We especially thank Michael TÃ¼xen for help
 with connection establishment/teardown, Gorry Fairhurst for his
 suggestions regarding fragmentation and packet sizes, and Spencer
 Dawkins for his extremely detailed and constructive review. This
 work has received funding from the European Union’s Horizon 2020
 research and innovation program under grant agreement No. 644334
 (NEAT).

Authors’ Addresses

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 N-0316 Oslo
 Norway

 Phone: +47 22 85 24 20
 Email: michawe@ifi.uio.no

 Stein Gjessing
 University of Oslo
 PO Box 1080 Blindern
 N-0316 Oslo
 Norway

 Phone: +47 22 85 24 44
 Email: steing@ifi.uio.no

