Network Working Group
Independent Submission E. Karelina, Ed.
Internet-Draft
Request for Comments: 9548 InfoTeCS
Intended status:
Category: Informational December 2023
Expires: 14 June March 2024
ISSN: 2070-1721
Generating the Transport Key Containers Using the GOST Algorithms
draft-pkcs12-gost-08
Abstract
This document specifies how to use "PKCS #12: Personal Information
Exchange Syntax v1.1" (RFC 7292) to generate the transport key containers
for storing keys and certificates in conjunction with the Russian
national standard GOST algorithms.
This specification has been developed outside the IETF. The purpose
of publication being is to facilitate interoperable implementations that
wish to support the GOST algorithms. This document does not imply
IETF endorsement of the cryptographic algorithms used here.
Status of This Memo
This Internet-Draft document is submitted in full conformance with not an Internet Standards Track specification; it is
published for informational purposes.
This is a contribution to the
provisions RFC Series, independently of BCP 78 any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and BCP 79.
Internet-Drafts makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are working documents not candidates for any level of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list Standard;
see Section 2 of RFC 7841.
Information about the current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum status of six months this document, any errata,
and how to provide feedback on it may be updated, replaced, or obsoleted by other documents obtained at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 3 June 2024.
https://www.rfc-editor.org/info/rfc9548.
Copyright Notice
Copyright (c) 2023 2024 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info)
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Conventions Used in This Document . . . . . . . . . . . . . . 3
3. Basic Terms and Definitions . . . . . . . . . . . . . . . . . 3
4. PFX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.1. Structure of PFX . . . . . . . . . . . . . . . . . . . . 6
4.2. AuthenticatedSafe . . . . . . . . . . . . . . . . . . . . 6
4.2.1. Unencrypted Data . . . . . . . . . . . . . . . . . . 6
4.2.2. Password-encrypted data . . . . . . . . . . . . . . . 7 Password-Encrypted Data
4.3. SafeContents and SafeBag . . . . . . . . . . . . . . . . 7
5. GOST R 34.10–2012 key representation . . . . . . . . . . . . 8 34.10-2012 Key Representation
5.1. Masking GOST R 34.10–2012 keys . . . . . . . . . . . . . 8 34.10-2012 Keys
5.2. KeyBag structure Structure for GOST R 34.10–2012 key . . . . . . . 10 34.10-2012 Key
5.3. OneAsymmetricKey structure . . . . . . . . . . . . . . . 10 Structure
5.4. EncryptedPrivateKeyInfo structure Structure for GOST R 34.10–2012
key . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 34.10-2012 Key
6. GOST R 34.10–2012 certificate representation . . . . . . . . 11 34.10-2012 Certificate Representation
7. Security Mechanisms . . . . . . . . . . . . . . . . . . . . . 12
8. Security Considerations . . . . . . . . . . . . . . . . . . . 13
9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 13
10. ASN.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . 13
11. References . . . . . . . . . . . . . . . . . . . . . . . . . 13
11.1. Normative References . . . . . . . . . . . . . . . . . . 13
11.2. Informative References . . . . . . . . . . . . . . . . . 15
Appendix A. Examples . . . . . . . . . . . . . . . . . . . . . . 15
A.1. Test data . . . . . . . . . . . . . . . . . . . . . . . . 15 Data
A.1.1. Test certificate . . . . . . . . . . . . . . . . . . 15 Certificate
A.1.2. Test key . . . . . . . . . . . . . . . . . . . . . . 16 Key
A.2. The example Example of a PFX with a password-protected key Password-Protected Key and
unencrypted certificate. . . . . . . . . . . . . . . . . 16
Unencrypted Certificate
A.2.1. PFX in BASE64 format . . . . . . . . . . . . . . . . 16 Format
A.2.2. PFX in ASN.1 format . . . . . . . . . . . . . . . . . 17 Format
A.2.3. Decrypted key value Key Value in BASE64 format . . . . . . . . 21 Format
A.2.4. Decrypted key value Key Value in ASN.1 format . . . . . . . . . 22 Format
A.3. The example Example of a PFX with a password-protected key Password-Protected Key and a
password-protected certificate. . . . . . . . . . . . . . 22
Password-Protected Certificate
A.3.1. PFX in BASE64 format . . . . . . . . . . . . . . . . 22 Format
A.3.2. PFX in ASN.1 format . . . . . . . . . . . . . . . . . 23 Format
A.3.3. Decrypted key value Key Value in BASE64 format . . . . . . . . 26 Format
A.3.4. Decrypted key value Key Value in ASN.1 format . . . . . . . . . 26 Format
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 26
Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 27
1. Introduction
This document provides a specification of the usage of GOST
algorithms with PKCS #12 v1.1.
PKCS #12 v1.1 describes a syntax for transfer of personal information
such as private keys, certificates, and various secrets.
This memo describes the creating creation of transport key containers for keys
and certificates of electronic signature verification keys which are
created in accordance with using the GOST R 34.10–2012 34.10-2012 algorithm. The GOST R
34.11-2012 algorithm is used to ensure the integrity of transport key
containers.
Caution:
This specification is not a standard and does not have IETF community
consensus. It makes use of a cryptographic algorithm that is a
national standard for Russia. Neither the IETF nor the IRTF has
analyzed that algorithm for suitability for any given application,
and it may contain either intended or unintended weaknesses.
2. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
3. Basic Terms and Definitions
Throughout this document, the following notation is notations are used:
+==========+====================================================+
| Notation | Definition |
+==========+====================================================+
|
P | a password encoded as a Unicode UTF-8 string |
+----------+----------------------------------------------------+
|
S | a random initializing value |
+----------+----------------------------------------------------+
| V^(*) | the set of all binary row vectors of finite length |
| | (hereinafter referred to as vectors) including |
| | empty string |
+----------+----------------------------------------------------+
|
V_s | the set of all binary row vectors byte strings of length s, where s |
| | >= 0; if s the string 𝑏
= 0, then (b_1,...,b_s) belongs to the set V_s consists of an |
| | empty string of length 0 |
+----------+----------------------------------------------------+
| if b_1,...,b_s∈{0,...,255}
|A| | the number of components (a length) of the vector |
| | A belonging to
V^(*) (if A is an empty string, |
| | then |A| = 0) |
+----------+----------------------------------------------------+
|
A||C | a concatenation of two octet byte strings A, C, C from V_s, i.e., a |
| | vector
string from V_(|A|+|C|), where the left subvector |
| | substring from V_(|A|) is
equal to the vector string A and the |
| | right subvector substring from V_(|C|) is
equal to the |
| | vector string C: A = (a_(n_1),...,a_1) in V_(n_1) and C = |
| | (c_(n_2),..., c_1)
(c_(n_2),...,c_1) in V_(n_2), res = |
| | (a_(n_1),...,a_1,c_(n_2),..., c_1)
(a_(n_1),...,a_1,c_(n_2),...,c_1) in V_(n_1+n_2)) |
+----------+----------------------------------------------------+
|
F_q | a finite prime field represented as a set of q |
| | integers {0,1,..., q
{0,1,...,q - 1}, where q > 3 – - prime |
| | number |
+----------+----------------------------------------------------+
|
b mod q | the minimum non-negative number comparable to b |
| | modulo p |
+----------+----------------------------------------------------+
Table 1: Terms and Definitions
INT(b) integer INT(b) = b_1+b_2∙256+...+b_s∙ 256^(s-1), where b∈ V_s
This document uses the following abbreviations and definitions:
+================+==================================================+
| Abbreviations | Definition |
| terms and Terms | |
+================+==================================================+
| abbreviations:
Signature | one or more data elements resulting from |
| | the signature
process (clause (Clause 3.12 of |
| | [ISO14888-1]). Note: the The terms "digital |
| |
signature", "electronic signature", and |
| | "electronic digital
signature" are |
| | considered equivalent in this document. |
+----------------+--------------------------------------------------+
|
Signature key | set of private data elements specific to |
| | an entity and
usable only by this entity |
| | in the signature process (clause (Clause 3.13
of |
| | [ISO14888-1]). Note: Sometimes called a |
| | private key. |
+----------------+--------------------------------------------------+
|
Verification | key set of public data elements which that is |
| key | mathematically
related to an entity's |
| | signature key and which is used by the |
| | verifier
in the verification process |
| | (clause (Clause 3.16 of [ISO14888-1]). Note: |
| |
Sometimes called a public key. |
+----------------+--------------------------------------------------+
|
ASN.1 | Abstract Syntax Notation One, as defined |
| | in [X.680]. |
+----------------+--------------------------------------------------+
|
BER | Basic Encoding Rules, as defined in |
| | [X.690]. |
+----------------+--------------------------------------------------+
|
HMAC_GOSTR3411 | Hashed-Based Hash-Based Message Authentication |
| | Code. A function
for calculating a |
| | Message Authentication Code (MAC) based |
| | on the
GOST R 34.11-2012 hash function |
| | (see [RFC6986]) with 512-bit
output in |
| | accordance with [RFC2104]. |
+----------------+--------------------------------------------------+
Table 2: Abbreviations and Definition
4. PFX
The transport key container (PFX, (PFX; see [RFC7292]) is designed for
secure storage and data transfer. The scope of this document is to
define how the transport key container is used for private key and
certificate protection with a password when GOST R 34.10-2012 is
applied. .
4.1. Structure of PFX
In accordance with [RFC7292] [RFC7292], the transport key container has the
following structure:
PFX ::= SEQUENCE
{
version INTEGER {v3(3)}(v3,...),
authSafe ContentInfo,
macData MacData OPTIONAL
}
The fields of the PFX have the following meanings:
* version is the syntax version number; the only allowed value for
this specification is 3; 3.
* authSafe contains the data of type ContentInfo. In the case of
password integrity mode mode, the authSafe.content field has a Data
type value and contains a BER-encoded value of the
AuthenticatedSafe
structure; structure.
* macData has a MacData type and type; in the case of password integrity
mode
mode, the macData field should contain the information about the
algorithm and parameters for a password key generation. The
integrity Integrity
control is ensured by using the HMAC_GOSTR3411_2012_512 algorithm:
the macData.mac.digestAlgorithm.algorithm field contains the
HMAC_GOSTR3411_2012_512 algorithm identifier (see Section 7).
When processing a transport key container, this field should be
checked first.
4.2. AuthenticatedSafe
The AuthenticatedSafe structure is a sequence of ContentInfo values
(see [RFC5652]):
AuthenticatedSafe ::= SEQUENCE OF ContentInfo
-- Data if unencrypted
-- EncryptedData if password-encrypted
-- EnvelopedData if public key-encrypted
4.2.1. Unencrypted Data
If the data is not encrypted encrypted, then the content field is the BER-
encoded value of the SafeContents structure. The contentType field
is set to the id-data type.
4.2.2. Password-encrypted data Password-Encrypted Data
When password integrity mode is used used, the data is represented as an
EncryptedData structure ([RFC5652]). (see [RFC5652]). The encryption algorithm
and parameters have the following values:
ContentEncryptionAlgorithmIdentifier ::= SEQUENCE
{
encryptionAlgorithmOID OBJECT IDENTIFIER,
parameters PBES2-params
}
The PBES2-params type is defined in [RFC9337]. The content should be
encrypted according to the encryption algorithm in the PBES2 scheme,
as described in [RFC9337]. The following identifier MUST be
specified in EncryptedData.EncryptedContentInfo.contentEncryptionAlgorithm.encr
yptionAlgorithmOID the
EncryptedData.EncryptedContentInfo.contentEncryptionAlgorithm.
encryptionAlgorithmOID field:
{
iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkcs-5(5) pbes2(13)
}
The encrypted content is specified in the
EncryptedData.EncryptedContentInfo.encryptedContent field.
4.3. SafeContents and SafeBag
In accordance with [RFC7292] [RFC7292], the SafeContents structure is a
sequence of SafeBag:
SafeContents ::= SEQUENCE OF SafeBag
where
SafeBag ::= SEQUENCE
{
bagId BAG-TYPE.&id ({PKCS12BagSet})
bagValue [0] EXPLICIT BAG-TYPE.&Type({PKCS12BagSet}{@bagId})
bagAttributes SET OF PKCS12Attribute OPTIONAL
}
The fields of SafeBag have the following meanings:
* bagId is an object identifier, identifier; it defines the type of object; object.
* bagValue is the value of an object; object.
* bagAttributes contains the users users' names, the key identifiers identifiers, and
other additional information. It This field is optional.
See [RFC7292] [RFC7292], Section 4.2. 4.2 for the different bag types. This
document describes the 2 two object types of the SafeBag structure:
* pkcs8ShroudedKeyBag,
* certBag.
1. pkcs8ShroudedKeyBag
2. certBag
When password integrity mode is used used, the private key has the
following structure:
pkcs8ShroudedKeyBag BAG-TYPE ::=
{
PKCS8ShroudedKeyBag IDENTIFIED BY {bagtypes 2}
}
The bagValue field contains the key and information about it in the key, in
encrypted form form, in the EncryptedPrivateKeyInfo structure.
A certBag contains a certificate of a certain type. Object
identifiers are used to distinguish between different certificate
types.
certBag BAG-TYPE ::=
{
CertBag IDENTIFIED BY { bagtypes 3 }
}
If the certificate is not encrypted, the CertBag structure is placed
in the Data structure (see [RFC5652]). If the certificate is
encrypted, the CertBag structure is placed in the EncryptedData
structure (see [RFC5652]).
5. GOST R 34.10–2012 key representation 34.10-2012 Key Representation
This section describes the GOST R 34.10–2012 34.10-2012 private keys key
representation for asymmetric key pairs. Masked keys should be used
to ensure the protection of that private keys are protected from leaks leaking through the side
channels when reading and performing operations with keys.
5.1. Masking GOST R 34.10–2012 keys 34.10-2012 Keys
The masking algorithm is defined by the basic cryptographic
transformation operation of the algorithm: multiplication in the F_q
field for GOST R 34.10–2012 34.10-2012 keys.
Let M_1, M_2, ..., M_k be a sequence of k masks. Let M_i() denote
the operation of applying the i-th mask and M_i^-1() denote the
operation of removing the i-th mask, 1 <= i <= k. Let K be a key.
The masked key K_M is obtained by applying the masking operation k
times:
K_M = M_k (...(M_2(M_1(K)...).
Unmasking is performed by applying the removing removal operation k times, but
in reverse order:
K = M_1^-1(...(M_(k-1)^-1(M_k^-1(K_M))...).
The masked key is represented as the sequence
I = K_M||M_1||M_2||...||M_k.
Let the key K be n bits in length, then length; then, the sequence I is
represented in memory as a sequence of (k + 1)*n bits. I is
represented in little-endian format. It is possible to use an
unmasked private key (i.e., k = 0, K_M = K). The For GOST R 34.10-2012
keys, the masking operation is the multiplication of the key by the
inverse of the mask: K_M INT(K_M) = K INT(K) * M^-1 INT(M)^-1 mod Q, where the Q
value is taken from the key parameters. The operation of removing
the mask is the multiplication of the masked key by the mask: K INT(K)
= K_M INT(K_M) * M INT(M) mod Q. The public key is specified by a pair of
coordinates (x, y) as defined in GOST R 34.10–2012, 34.10-2012, presented in the
following format:
* a public key corresponding to the GOST R 34.10–2012 34.10-2012 algorithm with
a key length of 256 bits has the GostR3410–2012-256-PublicKey GostR3410-2012-256-PublicKey
representation. It is specified by a 64-byte string, where the
first 32 bytes contain the little-endian representation of the x
coordinate,
coordinate and the last 32 bytes contain the little-endian
representation of the y coordinate; coordinate.
* a public key corresponding to the GOST R 34.10–2012 34.10-2012 algorithm with
a key length of 512 bits has the GostR3410–2012-512-PublicKey GostR3410-2012-512-PublicKey
representation. It is specified by a 128-byte string, where the
first 64 bytes contain the little-endian representation of the x
coordinate,
coordinate and the last 64 bytes contain the little-endian
representation of the y coordinate.
The public keys GostR3410-2012-256-PublicKey and
GostR3410-2012-512-PublicKey MUST be DER-encoded DER encoded as an octet string
in accordance with [RFC9215] (section 4.3):
GostR3410–2012-256-PublicKey Section 4.3 of [RFC9215]:
GostR3410-2012-256-PublicKey ::= OCTET STRING (64),
GostR3410–2012-512-PublicKey
GostR3410-2012-512-PublicKey ::= OCTET STRING (128).
5.2. KeyBag structure Structure for GOST R 34.10–2012 key 34.10-2012 Key
In accordance with [RFC7292] [RFC7292], a KeyBag is defined as information
about a private key represented as the PrivateKeyInfo structure:
KeyBag := ::= PrivateKeyInfo
In accordance with [RFC5958], information about a private key is
presented in the following form:
PrivateKeyInfo := ::= OneAsymmetricKey
5.3. OneAsymmetricKey structure Structure
In accordance with [RFC5958] [RFC5958], OneAsymmetricKey has the following
structure:
OneAsymmetricKey::= SEQUENCE
{
version Version,
privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
privateKey PrivateKey,
attributes [0] Attributes OPTIONAL,
...,
[[2:publicKey [1] PublicKey OPTIONAL]],
...
}
Version ::= INTEGER { v1(0), v2(1) } (v1, ..., v2)
PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
PrivateKey ::= OCTET STRING
PublicKey ::= BIT STRING
Attributes ::= SET OF Attribute
The fields have the following meanings:
* version identifies the version of OneAsymmetricKey. If publicKey
is present, then version is set to 2 else 2; else, version is set to 1.
* privateKeyAlgorithm identifies the private-key private key algorithm and
optionally contains parameters associated with the asymmetric key
pair. For GOST R 34.10–2012 34.10-2012 private keys keys, the identifiers of the
corresponding public keys are used, used; they are defined in the [RFC9215].
The use of identifiers and public key parameters is defined in the
[RFC9215].
* privateKey is an OCTET STRING that contains the value of the
masked private key I.
* attributes are optional. They contain information corresponding
to the public key (e.g., certificates).
* publicKey contains the value of the public key
GostR3410–2012-256-PublicKey
GostR3410-2012-256-PublicKey or GostR3410–2012-512-PublicKey GostR3410-2012-512-PublicKey
encoded in a BIT STRING. It This field is an optional field. optional.
5.4. EncryptedPrivateKeyInfo structure Structure for GOST R 34.10–2012 key 34.10-2012 Key
In accordance with [RFC7292] [RFC7292], the encrypted information of regarding the
private key is defined as the PKCS8ShroudedKeyBag structure:
PKCS8ShroudedKeyBag::= EncryptedPrivateKeyInfo
In accordance with [RFC5958] the [RFC5958], EncryptedPrivateKeyInfo has the
following structure:
EncryptedPrivateKeyInfo ::= SEQUENCE
{
encryptionAlgorithm EncryptionAlgorithmIdentifier,
encryptedData EncryptedData
}
EncryptionAlgorithmIdentifier ::= AlgorithmIdentifier
EncryptedData ::= OCTET STRING
The fields have the following meanings:
* encryptionAlgorithm identifies the algorithm under which the
private key information is encrypted. Encryption MUST use the
PBES2 scheme. The algorithm and parameters of this scheme are
presented in [RFC9337].
* encryptedData is the DER-encoded PrivateKeyInfo structure.
6. GOST R 34.10–2012 certificate representation 34.10-2012 Certificate Representation
In accordance with [RFC7292] [RFC7292], a CertBag is defined as information
about a certificate and represented as has the following structure:
CertBag ::= SEQUENCE
{
certId BAG-TYPE.&id ({CertTypes}),
certValue [0] EXPLICIT BAG-TYPE.&Type ({CertTypes}{@certId})
}
The fields have the following meanings:
* certId identifies the type of certificate.
* certValue contains the certificate.
7. Security Mechanisms
Let the sender and receiver have a pre-agreed previously agreed-upon password P.
The sender generates a password key using the PBKDF2 algorithm in
accordance with [RFC9337] and uses it to encrypt the transmitted
private key. The recipient independently generates a password key
using the same PBKDF2 diversification algorithm in accordance with
[RFC9337] and uses it to extract the private key from the PFX.
The same password P is used to encrypt different sections of the PFX
using a different random initializing value S with a length of 8 to
32 bytes, where S and P are the input parameters of the PBKDF2
function. The password MUST be encoded as a Unicode UTF-8 string and
fed into the PBKDF2 algorithm as a P parameter.
The integrity of the PFX is ensured by using the
HMAC_GOSTR3411_2012_512 algorithm in accordance with [RFC7836]. For checking To
check the integrity of the PFX with the HMAC_GOSTR3411_2012_512 algorithm
algorithm, the key for this algorithm is also generated by using the
PBKDF2 algorithm in accordance with [RFC9337] [RFC9337], with the same value of
for the P parameter and a different initializing value S with a
length of 8 to 32 bytes. The dkLen parameter for the PBKDF2
algorithm is set to 96 bytes. The key for the
HMAC_GOSTR3411_2012_512 algorithm must be the last 32 bytes of the
96-byte sequence generated by the PBKDF2 algorithm. The PBKDF2
algorithm parameters S and c are saved in the macData.Salt and
macData.iterations fileds fields, respectively. The HMAC_GOSTR3411_2012_512
function is calculated from the content field of the authSafe
structure field. The authSafe structure field is a PFX structure
field. The value of the calculated checksum is saved in the
macData.mac.digest field. The macData.mac.digestAlgorithm.algorithm
field contains the following algorithm identifier:
id-tc26-gost3411-12-512 :: =
{
iso(1) member-body(2) ru(643) rosstandart(7) tc26(1)
algorithms (1)
algorithms(1) digest(2) gost3411–2012-512(3) gost3411-12-512(3)
}
The macData.mac.digestAlgorithm.parameters field isn't used and
should be omitted.
8. Security Considerations
The masked keys SHOULD be used to ensure the protection of that private keys are
protected from leaking through side channels when reading and
performing operations with keys. Applications MUST use unique values
for ukm and S in the PBKDF2 algorithm. It is RECOMMENDED that
parameter S consist of at least 32 octets of pseudo-random pseudorandom data in
order to reduce the probability of collisions of keys generated from
the same password. The password MUST be encoded as a Unicode UTF-8
string and fed into the PBKDF2 algorithm as a P parameter. For more information
information, see [RFC9337]. Encryption MUST use the PBES2 scheme for encryption to
encrypt private keys. Public keys MUST be DER-encoded DER encoded as an octet
string in accordance with [RFC9215]. Passwords SHOULD be stored in a
secure way. For information on security considerations for
generating the transport key containers containers, see [RFC7292].
9. IANA Considerations
This document has no IANA actions.
10. ASN.1 Modules
PKCS-12RU
{
iso(1) member-body(2) ru(643) rosstandart(7)
tc26(1) modules(0) pkcs-12ruSyntax(5)
}
DEFINITIONS EXPLICIT TAGS ::=
BEGIN
IMPORTS
GostR3410–2012-PublicKey
GostR3410-2012-PublicKey
FROM GostR3410–2012-PKISyntax GostR3410-2012-PKISyntax
{
iso(1) member-body(2) ru(643) rosstandart(7) tc26(1)
modules(0) gostR3410–2012-PKISyntax(2) gostR3410-2012-PKISyntax(2)
};
END
11. References
11.1. Normative References
[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
Hashing for Message Authentication", RFC 2104,
DOI 10.17487/RFC2104, February 1997,
<https://www.rfc-editor.org/info/rfc2104>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, DOI 10.17487/RFC5652, September 2009,
<https://www.rfc-editor.org/info/rfc5652>.
[RFC5958] Turner, S., "Asymmetric Key Packages", RFC 5958,
DOI 10.17487/RFC5958, August 2010,
<https://www.rfc-editor.org/info/rfc5958>.
[RFC6986] Dolmatov, V., Ed. and A. Degtyarev, "GOST R 34.11-2012:
Hash Function", RFC 6986, DOI 10.17487/RFC6986, August
2013, <https://www.rfc-editor.org/info/rfc6986>.
[RFC7292] Moriarty, K., Ed., Nystrom, M., Parkinson, S., Rusch, A.,
and M. Scott, "PKCS #12: Personal Information Exchange
Syntax v1.1", RFC 7292, DOI 10.17487/RFC7292, July 2014,
<https://www.rfc-editor.org/info/rfc7292>.
[RFC7836] Smyshlyaev, S., Ed., Alekseev, E., Oshkin, I., Popov, V.,
Leontiev, S., Podobaev, V., and D. Belyavsky, "Guidelines
on the Cryptographic Algorithms to Accompany the Usage of
Standards GOST R 34.10-2012 and GOST R 34.11-2012",
RFC 7836, DOI 10.17487/RFC7836, March 2016,
<https://www.rfc-editor.org/info/rfc7836>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC9215] Baryshkov, D., Ed., Nikolaev, V., and A. Chelpanov, "Using
GOST R 34.10-2012 and GOST R 34.11-2012 Algorithms with
the Internet X.509 Public Key Infrastructure", RFC 9215,
DOI 10.17487/RFC9215, March 2022,
<https://www.rfc-editor.org/info/rfc9215>.
[RFC9337] Karelina, E., Ed., "Generating Password-Based Keys Using
the GOST Algorithms", RFC 9337, DOI 10.17487/RFC9337,
December 2022, <https://www.rfc-editor.org/info/rfc9337>.
[X.680] ITU-T, "Information Technology - Abstract Syntax Notation
One:
One (ASN.1): Specification of Basic Notation.", ITU-T, basic notation", ITU-T
Recommendation X.680, ISO/IEC 8824-1:2002, 2002. 8824-1:2021, February 2021,
<https://www.itu.int/rec/T-REC-X.680>.
[X.690] ITU-T, "Information technology - ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules
(DER).", ITU-T,
(DER)", ITU-T Recommendation X.690, ISO/IEC International
Standard 8825-1:2008, November 2008. 8825-1:2021, February 2021,
<https://www.itu.int/rec/T-REC-X.690>.
11.2. Informative References
[GostPkcs12]
Potashnikov, A., Karelina, E., Pianov, S., and A.
Naumenko, "Information technology. Cryptographic Data
Security. The transport key containers.", R
1323565.1.041–2022. Federal Agency on Technical Regulating
and Metrology (In Russian).
[ISO14888-1]
ISO/IEC, "Information technology - Security techniques -
Digital signatures with appendix - Part 1: General.", General", ISO/
IEC 14888-1, 2008. April 2008,
<https://www.iso.org/standard/44226.html>.
Appendix A. Examples
This section contains examples of using GOST cryptographic algorithms
to create a PFX.
A.1. Test data Data
In all examples examples, the following data is used.
A.1.1. Test certificate Certificate
This section contains a test certififcate certificate in BASE64 format.
MIICLjCCAdugAwIBAgIEAYy6hDAKBggqhQMHAQEDAjA4MQ0wCwYDVQQKEwRUSzI2
MScwJQYDVQQDEx5DQSBUSzI2OiBHT1NUIDM0LjEwLTEyIDI1Ni1iaXQwHhcNMDEw
MTAxMDAwMDAwWhcNNDkxMjMxMDAwMDAwWjA7MQ0wCwYDVQQKEwRUSzI2MSowKAYD
VQQDEyFPUklHSU5BVE9SOiBHT1NUIDM0LjEwLTEyIDUxMi1iaXQwgaAwFwYIKoUD
BwEBAQIwCwYJKoUDBwECAQIBA4GEAASBgLSLt1q8KQ4YZVxioU+1LV9QhE7MHR9g
BEh7S1yVNGlqt7+rNG5VFqmrPM74rbUsOlhV8M+zZKprXdk35Oz8lSW/n2oIUHZx
ikXIH/SSHj4rv3K/Puvz7hYTQSZl/xPdp78nUmjrEa6d5wfX8biEy2z0dgufFvAk
Mw1Ua4gdXqDOo4GHMIGEMGMGA1UdIwRcMFqAFKxsDkxEZqJCluKfCTslZvPLpFMq
oTykOjA4MQ0wCwYDVQQKEwRUSzI2MScwJQYDVQQDEx5DQSBUSzI2OiBHT1NUIDM0
LjEwLTEyIDI1Ni1iaXSCBAGMuoEwHQYDVR0OBBYEFH4GVwmYDK1rCKhX7nkAWDrJ
16CkMAoGCCqFAwcBAQMCA0EACl6p8dAbpi9Hk+3mgMyI0WIh17IrlrSp/mB0F7Zz
Mt8XUD1Dwz3JrrnxeXnfMvOA5BdUJ9hCyDgMVAGs/IcEEA==
A.1.2. Test key Key
This section contains a test key bytes in hexadecimal.
F95A5D44C5245F63F2E7DF8E782C1924EADCB8D06C52D91023179786154CBDB1
561B4DF759D69F67EE1FBD5B68800E134BAA12818DA4F3AC75B0E5E6F9256911
A.2. The example Example of a PFX with a password-protected key Password-Protected Key and unencrypted
certificate. Unencrypted
Certificate
In this example example, the PKCS8SHroudedKeybag structure is used to store
the key, which is placed in the Data structure. The certBag
structure is used to store the certificate, which is placed in the
Data structure. A The following password is used to encrypt the key
and
control the integrity: provide integrity control: "Пароль для PFX". The password is in
hexadecimal:
D09FD0B0D180D0BED0BBD18C20D0B4D0BBD18F20504658
The key encryption algorithm identifier:
1.2.643.7.1.1.5.2.2
A.2.1. PFX in BASE64 format Format
MIIFKwIBAzCCBMQGCSqGSIb3DQEHAaCCBLUEggSxMIIErTCCAswGCSqGSIb3DQEH
AaCCAr0EggK5MIICtTCCArEGCyqGSIb3DQEMCgEDoIICSjCCAkYGCiqGSIb3DQEJ
FgGgggI2BIICMjCCAi4wggHboAMCAQICBAGMuoQwCgYIKoUDBwEBAwIwODENMAsG
A1UEChMEVEsyNjEnMCUGA1UEAxMeQ0EgVEsyNjogR09TVCAzNC4xMC0xMiAyNTYt
Yml0MB4XDTAxMDEwMTAwMDAwMFoXDTQ5MTIzMTAwMDAwMFowOzENMAsGA1UEChME
VEsyNjEqMCgGA1UEAxMhT1JJR0lOQVRPUjogR09TVCAzNC4xMC0xMiA1MTItYml0
MIGgMBcGCCqFAwcBAQECMAsGCSqFAwcBAgECAQOBhAAEgYC0i7davCkOGGVcYqFP
tS1fUIROzB0fYARIe0tclTRpare/qzRuVRapqzzO+K21LDpYVfDPs2Sqa13ZN+Ts
/JUlv59qCFB2cYpFyB/0kh4+K79yvz7r8+4WE0EmZf8T3ae/J1Jo6xGunecH1/G4
hMts9HYLnxbwJDMNVGuIHV6gzqOBhzCBhDBjBgNVHSMEXDBagBSsbA5MRGaiQpbi
nwk7JWbzy6RTKqE8pDowODENMAsGA1UEChMEVEsyNjEnMCUGA1UEAxMeQ0EgVEsy
NjogR09TVCAzNC4xMC0xMiAyNTYtYml0ggQBjLqBMB0GA1UdDgQWBBR+BlcJmAyt
awioV+55AFg6ydegpDAKBggqhQMHAQEDAgNBAApeqfHQG6YvR5Pt5oDMiNFiIdey
K5a0qf5gdBe2czLfF1A9Q8M9ya658Xl53zLzgOQXVCfYQsg4DFQBrPyHBBAxVDAj
BgkqhkiG9w0BCRUxFgQUeVV0+dS25MICJChpmGc/8AoUwE0wLQYJKoZIhvcNAQkU
MSAeHgBwADEAMgBGAHIAaQBlAG4AZABsAHkATgBhAG0AZTCCAdkGCSqGSIb3DQEH
AaCCAcoEggHGMIIBwjCCAb4GCyqGSIb3DQEMCgECoIIBVzCCAVMwWQYJKoZIhvcN
AQUNMEwwKQYJKoZIhvcNAQUMMBwECKf4N7NMwugqAgIIADAMBggqhQMHAQEEAgUA
MB8GCSqFAwcBAQUCAjASBBAlmt2WDfaPJlsAs0mLKglzBIH1DMvEacbbWRNDVSnX
JLWygYrKoipdOjDA/2HEnBZ34uFOLNheUqiKpCPoFpbR2GBiVYVTVK9ibiczgaca
EQYzDXtcS0QCZOxpKWfteAlbdJLC/SqPurPYyKi0MVRUPROhbisFASDT38HDH1Dh
0dL5f6ga4aPWLrWbbgWERFOoOPyh4DotlPF37AQOwiEjsbyyRHq3HgbWiaxQRuAh
eqHOn4QVGY92/HFvJ7u3TcnQdLWhTe/lh1RHLNF3RnXtN9if9zC23laDZOiWZplU
yLrUiTCbHrtn1RppPDmLFNMt9dJ7KKgCkOi7Zm5nhqPChbywX13wcfYxVDAjBgkq
hkiG9w0BCRUxFgQUeVV0+dS25MICJChpmGc/8AoUwE0wLQYJKoZIhvcNAQkUMSAe
HgBwADEAMgBGAHIAaQBlAG4AZABsAHkATgBhAG0AZTBeME4wCgYIKoUDBwEBAgME
QAkBKw4ihn7pSIYTEhu0bcvTPZjI3WgVxCkUVlOsc80G69EKFEOTnObGJGSKJ51U
KkOsXF0a7+VBZf3BcVVQh9UECIVEtO+VpuskAgIIAA==
A.2.2. PFX in ASN.1 format Format
0 1323:SEQUENCE:
4 1: INTEGER: 3
7 1220: SEQUENCE:
11 9: OBJECT IDENTIFIER:data [1.2.840.113549.1.7.1]
22 1205: CONTEXT SPECIFIC (0):
26 1201: OCTET STRING:
30 1197: SEQUENCE:
34 716: SEQUENCE:
38 9: OBJECT IDENTIFIER:data [1.2.840.113549.1.7.1]
49 701: CONTEXT SPECIFIC (0):
53 697: OCTET STRING:
57 693: SEQUENCE:
61 689: SEQUENCE:
65 11: OBJECT IDENTIFIER:pkcs-12-certBag
: [1.2.840.113549.1.12.10.1.3]
78 586: CONTEXT SPECIFIC (0):
82 582: SEQUENCE:
86 10: OBJECT IDENTIFIER:x509Certificate
: [1.2.840.113549.1.9.22.1]
98 566: CONTEXT SPECIFIC (0):
102 562: OCTET STRING:
106 558: SEQUENCE:
110 475: SEQUENCE:
114 3: CONTEXT SPECIFIC (0):
116 1: INTEGER:2
119 4: INTEGER:26000004
125 10: SEQUENCE:
127 8: OBJECT IDENTIFIER:
: [1.2.643.7.1.1.3.2]
137 56: SEQUENCE:
139 13: SET:
141 11: SEQUENCE:
143 3: OBJECT IDENTIFIER:
: organizationName [2.5.4.10]
148 4: PRINTABLE STRING:'TK26'
154 39: SET:
156 37: SEQUENCE:
158 3: OBJECT IDENTIFIER:commonName
: [2.5.4.3]
163 30: PRINTABLE STRING:
: 'CA TK26: GOST 34.10-12 256-bit'
195 30: SEQUENCE:
197 13: UTC TIME:'010101000000Z'
212 13: UTC TIME:'491231000000Z'
227 59: SEQUENCE:
229 13: SET:
231 11: SEQUENCE:
233 3: OBJECT IDENTIFIER:
: organizationName [2.5.4.10]
238 4: PRINTABLE STRING:'TK26'
244 42: SET:
246 40: SEQUENCE:
248 3: OBJECT IDENTIFIER:commonName
: [2.5.4.3]
253 33: PRINTABLE STRING:
: 'ORIGINATOR:
: GOST 34.10-12 512-bit'
288 160: SEQUENCE:
291 23: SEQUENCE:
293 8: OBJECT IDENTIFIER:
: [1.2.643.7.1.1.1.2]
303 11: SEQUENCE:
305 9: OBJECT IDENTIFIER:
: [1.2.643.7.1.2.1.2.1]
316 132: BIT STRING UnusedBits:0:
320 128: OCTET STRING:
: B48BB75ABC290E18655C62A
: 14FB52D5F50844ECC1D1F60
: 04487B4B5C9534696AB7BFA
: B346E5516A9AB3CCEF8ADB5
: 2C3A5855F0CFB364AA6B5DD
: 937E4ECFC9525BF9F6A0850
: 76718A45C81FF4921E3E2BB
: F72BF3EEBF3EE1613412665
: FF13DDA7BF275268EB11AE9
: DE707D7F1B884CB6CF4760B
: 9F16F024330D546B881D5EA0CE
451 135: CONTEXT SPECIFIC (3):
454 132: SEQUENCE:
457 99: SEQUENCE:
459 3: OBJECT IDENTIFIER:
: authorityKeyIdentifier [2.5.29.35]
464 92: OCTET STRING:
466 90: SEQUENCE:
468 20: CONTEXT SPECIFIC (0):
: AC6C0E4C4466A24296E2
: 9F093B2566F3CBA4532A
490 60: CONTEXT SPECIFIC (1):
492 58: CONTEXT SPECIFIC (4):
494 56: SEQUENCE:
496 13: SET:
498 11: SEQUENCE:
500 3: OBJECT IDENTIFIER:
: organizationName
: [2.5.4.10]
505 4: PRINTABLE STRING:'TK26'
511 39: SET:
513 37: SEQUENCE:
515 3: OBJECT IDENTIFIER:
: commonName [2.5.4.3]
520 30: PRINTABLE STRING:
: 'CA TK26: GOST '
: '34.10-12 256-bit'
552 4: CONTEXT SPECIFIC (2):
: 018CBA81
558 29: SEQUENCE:
560 3: OBJECT IDENTIFIER:
: subjectKeyIdentifier [2.5.29.14]
565 22: OCTET STRING:
567 20: OCTET STRING:
: 7E065709980CAD6B08A8
: 57EE7900583AC9D7A0A4
589 10: SEQUENCE:
591 8: OBJECT IDENTIFIER:[1.2.643.7.1.1.3.2]
601 65: BIT STRING UnusedBits:0:
: 0A5EA9F1D01BA62F4793EDE680CC88D1
: 6221D7B22B96B4A9FE607417B67332DF
: 17503D43C33DC9AEB9F17979DF32F380
: E4175427D842C8380C5401ACFC870410
668 84: SET:
670 35: SEQUENCE:
672 9: OBJECT IDENTIFIER:localKeyID
: [1.2.840.113549.1.9.21]
683 22: SET:
685 20: OCTET STRING:
: 795574F9D4B6E4C20224
: 286998673FF00A14C04D
707 45: SEQUENCE:
709 9: OBJECT IDENTIFIER:friendlyName
: [1.2.840.113549.1.9.20]
720 32: SET:
722 30: BMP STRING:'p12FriendlyName'
754 473: SEQUENCE:
758 9: OBJECT IDENTIFIER:data [1.2.840.113549.1.7.1]
769 458: CONTEXT SPECIFIC (0):
773 454: OCTET STRING:
777 450: SEQUENCE:
781 446: SEQUENCE:
785 11: OBJECT IDENTIFIER:pkcs-12-pkcs-8ShroudedKeyBag
: [1.2.840.113549.1.12.10.1.2]
798 343: CONTEXT SPECIFIC (0):
802 339: SEQUENCE:
806 89: SEQUENCE:
808 9: OBJECT IDENTIFIER:[1.2.840.113549.1.5.13]
819 76: SEQUENCE:
821 41: SEQUENCE:
823 9: OBJECT IDENTIFIER:
: [1.2.840.113549.1.5.12]
834 28: SEQUENCE:
836 8: OCTET STRING:'A7F837B34CC2E82A'
846 2: INTEGER:2048
850 12: SEQUENCE:
852 8: OBJECT IDENTIFIER:
: [1.2.643.7.1.1.4.2]
862 0: NULL:
864 31: SEQUENCE:
866 9: OBJECT IDENTIFIER:[1.2.643.7.1.1.5.2.2]
877 18: SEQUENCE:
879 16: OCTET STRING:
: 259ADD960DF68F265B00B3498B2A0973
897 245: OCTET STRING:
: 0CCBC469C6DB5913435529D724B5B281
: 8ACAA22A5D3A30C0FF61C49C1677E2E1
: 4E2CD85E52A88AA423E81696D1D86062
: 55855354AF626E273381A71A1106330D
: 7B5C4B440264EC692967ED78095B7492
: C2FD2A8FBAB3D8C8A8B43154543D13A1
: 6E2B050120D3DFC1C31F50E1D1D2F97F
: A81AE1A3D62EB59B6E05844453A838FC
: A1E03A2D94F177EC040EC22123B1BCB2
: 447AB71E06D689AC5046E0217AA1CE9F
: 8415198F76FC716F27BBB74DC9D074B5
: A14DEFE58754472CD1774675ED37D89F
: F730B6DE568364E896669954C8BAD489
: 309B1EBB67D51A693C398B14D32DF5D2
: 7B28A80290E8BB666E6786A3C285BCB0
: 5F5DF071F6
1145 84: SET:
1147 35: SEQUENCE:
1149 9: OBJECT IDENTIFIER:localKeyID
: [1.2.840.113549.1.9.21]
1160 22: SET:
1162 20: OCTET STRING:
: 795574F9D4B6E4C20224286998673FF00A14C04D
1184 45: SEQUENCE:
1186 9: OBJECT IDENTIFIER:friendlyName
: [1.2.840.113549.1.9.20]
1197 32: SET:
1199 30: BMP STRING:'p12FriendlyName'
1231 94: SEQUENCE:
1233 78: SEQUENCE:
1235 10: SEQUENCE:
1237 8: OBJECT IDENTIFIER:[1.2.643.7.1.1.2.3]
1247 64: OCTET STRING:
: 09012B0E22867EE9488613121BB46DCB
: D33D98C8DD6815C429145653AC73CD06
: EBD10A1443939CE6C624648A279D542A
: 43AC5C5D1AEFE54165FDC171555087D5
1313 8: OCTET STRING:'8544B4EF95A6EB24'
1323 2: INTEGER:2048
A.2.3. Decrypted key value Key Value in BASE64 format Format
MIHiAgEBMBcGCCqFAwcBAQECMAsGCSqFAwcBAgECAQRAEWkl+eblsHWs86SNgRKq
SxMOgGhbvR/uZ5/WWfdNG1axvUwVhpcXIxDZUmzQuNzqJBkseI7f5/JjXyTFRF1a
+YGBgQG0i7davCkOGGVcYqFPtS1fUIROzB0fYARIe0tclTRpare/qzRuVRapqzzO
+K21LDpYVfDPs2Sqa13ZN+Ts/JUlv59qCFB2cYpFyB/0kh4+K79yvz7r8+4WE0Em
Zf8T3ae/J1Jo6xGunecH1/G4hMts9HYLnxbwJDMNVGuIHV6gzg==
A.2.4. Decrypted key value Key Value in ASN.1 format Format
0 226:SEQUENCE : 226:SEQUENCE:
3 1: INTEGER : INTEGER: 1
6 23: SEQUENCE : SEQUENCE:
8 8: OBJECT IDENTIFIER : IDENTIFIER: [1.2.643.7.1.1.1.2]
18 11: SEQUENCE : SEQUENCE:
20 9: OBJECT IDENTIFIER : IDENTIFIER: [1.2.643.7.1.2.1.2.1]
31 64: OCTET STRING : STRING:
: 116925F9E6E5B075ACF3A48D8112AA4B130E80685BBD1FEE679FD6
: 59F74D1B56B1BD4C158697172310D9526CD0B8DCEA24192C788EDF
: E7F2635F24C5445D5AF9
97 129: CONTEXT SPECIFIC (1) : (1):
: 01B48BB75ABC290E18655C62A14FB52D5F50844ECC1D1F6004487B
: 4B5C9534696AB7BFAB346E5516A9AB3CCEF8ADB52C3A5855F0CFB3
: 64AA6B5DD937E4ECFC9525BF9F6A085076718A45C81FF4921E3E2B
: BF72BF3EEBF3EE1613412665FF13DDA7BF275268EB11AE9DE707D7
: F1B884CB6CF4760B9F16F024330D546B881D5EA0CE
A.3. The example Example of a PFX with a password-protected key Password-Protected Key and a password-
protected certificate. Password-
Protected Certificate
In this example example, the PKCS8SHroudedKeybag structure is used to store
the key, which is placed in the Data structure (see [RFC5652]). The
certBag structure is used to store the certificate, which is placed
in the EncryptedData structure (see [RFC5652]). A The following
password is used to encrypt the key and control the integrity. provide integrity control.
The password is in hexadecimal.
0xD09FD0B0D180D0BED0BBD18C20D0B4D0BBD18F20504658
The key encryption algorithm identifier:
1.2.643.7.1.1.5.1.1
The certificate encryption algorithm identifier:
1.2.643.7.1.1.5.1.2
A.3.1. PFX in BASE64 format Format
MIIFjAIBAzCCBSUGCSqGSIb3DQEHAaCCBRYEggUSMIIFDjCCA0EGCSqGSIb3DQEH
BqCCAzIwggMuAgEAMIIDJwYJKoZIhvcNAQcBMFUGCSqGSIb3DQEFDTBIMCkGCSqG
SIb3DQEFDDAcBAgUuSVGsSwGjQICCAAwDAYIKoUDBwEBBAIFADAbBgkqhQMHAQEF
AQIwDgQM9Hk3dagtS48+G/x+gIICwWGPqxxN+sTrKbruRf9R5Ya9cf5AtO1frqMn
f1eULfmZmTg/BdE51QQ+Vbnh3v1kmspr6h2+e4Wli+ndEeCWG6A6X/G22h/RAHW2
YrVmf6cCWxW+YrqzT4h/8RQL/9haunD5LmHPLVsYrEai0OwbgXayDSwARVJQLQYq
sLNmZK5ViN+fRiS5wszVJ3AtVq8EuPt41aQEKwPy2gmH4S6WmnQRC6W7aoqmIifF
PJENJNn5K2M1J6zNESs6bFtYNKMArNqtvv3rioY6eAaaLy6AV6ljsekmqodHmQjv
Y4eEioJs0xhpXhZY69PXT+ZBeHv6MSheBhwXqxAd1DqtPTafMjNK8rqKCap9TtPG
vONvo5W9dgwegxRRQzlum8dzV4m1W9Aq4W7t8/UcxDWRz3k6ijFPlGaA9+8ZMTEO
RHhBRvM6OY2/VNNxbgxWfGYuPxpSi3YnCZIPmBEe5lU/Xv7KjzFusGM38F8YR61k
4/QNpKI1QUv714YKfaUQznshGGzILv1NGID62pl1+JI3vuawi2mDMrmkuM9QFU9v
/kRP+c2uBHDuOGEUUSNhF08p7+w3vxplatGWXH9fmIsPBdk2f3wkn+rwoqrEuijM
I/bCAylU/M0DMKhAo9j31UYSZdi4fsfRWYDJMq/8FPn96tuo+oCpbqv3NUwpZM/8
Li4xqgTHtYw/+fRG0/P6XadNEiII/TYjenLfVHXjAHOVJsVeCu/t3EsMYHQddNCh
rFk/Ic2PdIQOyB4/enpW0qrKegSbyZNuF1WI4zl4mI89L8dTQBUkhy45yQXZlDD8
k1ErYdtdEsPtz/4zuSpbnmwCEIRoOuSXtGuJP+tbcWEXRKM2UBgi3qBjpn7DU18M
tsrRM9pDdadl8mT/Vfh9+B8dZBZVxgQu70lMPEGexbUkYHuFCCnyi9J0V92StbIz
Elxla1VebjCCAcUGCSqGSIb3DQEHAaCCAbYEggGyMIIBrjCCAaoGCyqGSIb3DQEM
CgECoIIBQzCCAT8wVQYJKoZIhvcNAQUNMEgwKQYJKoZIhvcNAQUMMBwECP0EQk0O
1twvAgIIADAMBggqhQMHAQEEAgUAMBsGCSqFAwcBAQUBATAOBAzwxSqgAAAAAAAA
AAAEgeUqj9mI3RDfK5hMd0EeYws7foZK/5ANr2wUhP5qnDjAZgn76lExJ+wuvlnS
9PChfWVugvdl/9XJgQvvr9Cu4pOh4ICXplchcy0dGk/MzItHRVC5wK2nTxwQ4kKT
kG9xhLFzoD16dhtqX0+/dQg9G8pE5EzCBIYRXLm1Arcz9k7KVsTJuNMjFrr7EQuu
Tr80ATSQOtsq50zpFyrpznVPGCrOdIjpymZxNdvw48bZxqTtRVDxCYATOGqz0pwH
ClWULHD9LIajLMB2GhBKyQw6ujIlltJs0T+WNdX/AT2FLi1LFSS3+Cj9MVQwIwYJ
KoZIhvcNAQkVMRYEFHlVdPnUtuTCAiQoaZhnP/AKFMBNMC0GCSqGSIb3DQEJFDEg
Hh4AcAAxADIARgByAGkAZQBuAGQAbAB5AE4AYQBtAGUwXjBOMAoGCCqFAwcBAQID
BEDp4e22JmXdnvR0xA99yQuzQuJ8pxBeOpsLm2dZQqt3Fje5zqW1uk/7VOcfV5r2
bKm8nsLOs2rPT8hBOoeAZvOIBAjGIUHw6IjG2QICCAA=
A.3.2. PFX in ASN.1 format Format
0 1420:SEQUENCE:
4 1: INTEGER:3
7 1317: SEQUENCE:
11 9: OBJECT IDENTIFIER:data [1.2.840.113549.1.7.1]
22 1302: CONTEXT SPECIFIC (0):
26 1298: OCTET STRING:
30 1294: SEQUENCE:
34 833: SEQUENCE:
38 9: OBJECT IDENTIFIER:encryptedData [1.2.840.113549.1.7.6]
49 818: CONTEXT SPECIFIC (0):
53 814: SEQUENCE:
57 1: INTEGER:0
60 807: SEQUENCE:
64 9: OBJECT IDENTIFIER:data [1.2.840.113549.1.7.1]
75 85: SEQUENCE:
77 9: OBJECT IDENTIFIER:[1.2.840.113549.1.5.13]
88 72: SEQUENCE:
90 41: SEQUENCE:
92 9: OBJECT IDENTIFIER:[1.2.840.113549.1.5.12]
103 28: SEQUENCE:
105 8: OCTET STRING:'14B92546B12C068D'
115 2: INTEGER:2048
119 12: SEQUENCE:
121 8: OBJECT IDENTIFIER:[1.2.643.7.1.1.4.2]
131 0: NULL:
133 27: SEQUENCE:
135 9: OBJECT IDENTIFIER:[1.2.643.7.1.1.5.1.2]
146 14: SEQUENCE:
148 12: OCTET STRING:
: F4793775A82D4B8F3E1BFC7E
162 705: CONTEXT SPECIFIC (0):
: 618FAB1C4DFAC4EB29BAEE45FF51E586BD7
: 1FE40B4ED5FAEA3277F57942DF99999383F
: 05D139D5043E55B9E1DEFD649ACA6BEA1DB
: E7B85A58BE9DD11E0961BA03A5FF1B6DA1F
: D10075B662B5667FA7025B15BE62BAB34F8
: 87FF1140BFFD85ABA70F92E61CF2D5B18AC
: 46A2D0EC1B8176B20D2C004552502D062AB
: 0B36664AE5588DF9F4624B9C2CCD527702D
: 56AF04B8FB78D5A4042B03F2DA0987E12E9
: 69A74110BA5BB6A8AA62227C53C910D24D9
: F92B633527ACCD112B3A6C5B5834A300ACD
: AADBEFDEB8A863A78069A2F2E8057A963B1
: E926AA87479908EF6387848A826CD318695
: E1658EBD3D74FE641787BFA31285E061C17
: AB101DD43AAD3D369F32334AF2BA8A09AA7
: D4ED3C6BCE36FA395BD760C1E8314514339
: 6E9BC7735789B55BD02AE16EEDF3F51CC43
: 591CF793A8A314F946680F7EF1931310E44
: 784146F33A398DBF54D3716E0C567C662E3
: F1A528B762709920F98111EE6553F5EFECA
: 8F316EB06337F05F1847AD64E3F40DA4A23
: 5414BFBD7860A7DA510CE7B21186CC82EFD
: 4D1880FADA9975F89237BEE6B08B698332B
: 9A4B8CF50154F6FFE444FF9CDAE0470EE38
: 6114512361174F29EFEC37BF1A656AD1965
: C7F5F988B0F05D9367F7C249FEAF0A2AAC4
: BA28CC23F6C2032954FCCD0330A840A3D8F
: 7D5461265D8B87EC7D15980C932AFFC14F9
: FDEADBA8FA80A96EABF7354C2964CFFC2E2
: E31AA04C7B58C3FF9F446D3F3FA5DA74D12
: 2208FD36237A72DF5475E300739526C55E0
: AEFEDDC4B0C60741D74D0A1AC593F21CD8F
: 74840EC81E3F7A7A56D2AACA7A049BC9936
: E175588E33978988F3D2FC753401524872E
: 39C905D99430FC93512B61DB5D12C3EDCFF
: E33B92A5B9E6C021084683AE497B46B893F
: EB5B71611744A336501822DEA063A67EC35
: 35F0CB6CAD133DA4375A765F264FF55F87D
: F81F1D641655C6042EEF494C3C419EC5B52
: 4607B850829F28BD27457DD92B5B233125C
: 656B555E6E
871 453: SEQUENCE:
875 9: OBJECT IDENTIFIER:data [1.2.840.113549.1.7.1]
886 438: CONTEXT SPECIFIC (0):
890 434: OCTET STRING:
894 430: SEQUENCE:
898 426: SEQUENCE:
902 11: OBJECT IDENTIFIER:pkcs-12-pkcs-8ShroudedKeyBag [1.2.840.113549.1.12.10.1.2]
915 323: CONTEXT SPECIFIC (0):
919 319: SEQUENCE:
923 85: SEQUENCE:
925 9: OBJECT IDENTIFIER:[1.2.840.113549.1.5.13]
936 72: SEQUENCE:
938 41: SEQUENCE:
940 9: OBJECT IDENTIFIER:[1.2.840.113549.1.5.12]
951 28: SEQUENCE:
953 8: OCTET STRING:
: FD04424D0ED6DC2F
963 2: INTEGER:2048
967 12: SEQUENCE:
969 8: OBJECT IDENTIFIER:[1.2.643.7.1.1.4.2]
979 0: NULL:
981 27: SEQUENCE:
983 9: OBJECT IDENTIFIER:[1.2.643.7.1.1.5.1.1]
994 14: SEQUENCE:
996 12: OCTET STRING:
: F0C52AA00000000000000000
1010 229: OCTET STRING:
: 2A8FD988DD10DF2B984C77411E630B3B7E864AFF900DAF6C1484FE6A9C38C
: 06609FBEA513127EC2EBE59D2F4F0A17D656E82F765FFD5C9810BEFAFD0AE
: E293A1E08097A65721732D1D1A4FCCCC8B474550B9C0ADA74F1C10E242939
: 06F7184B173A03D7A761B6A5F4FBF75083D1BCA44E44CC20486115CB9B502
: B733F64ECA56C4C9B8D32316BAFB110BAE4EBF340134903ADB2AE74CE9172
: AE9CE754F182ACE7488E9CA667135DBF0E3C6D9C6A4ED4550F1098013386A
: B3D29C070A55942C70FD2C86A32CC0761A104AC90C3ABA322596D26CD13F9
: 635D5FF013D852E2D4B1524B7F828FD
1242 84: SET:
1244 35: SEQUENCE:
1246 9: OBJECT IDENTIFIER:localKeyID [1.2.840.113549.1.9.21]
1257 22: SET:
1259 20: OCTET STRING:
: 795574F9D4B6E4C20224286998673FF00A14C04D
1281 45: SEQUENCE:
1283 9: OBJECT IDENTIFIER:friendlyName [1.2.840.113549.1.9.20]
1294 32: SET:
1296 30: BMP STRING:'p12FriendlyName'
1328 94: SEQUENCE:
1330 78: SEQUENCE:
1332 10: SEQUENCE:
1334 8: OBJECT IDENTIFIER:[1.2.643.7.1.1.2.3]
1344 64: OCTET STRING:
: E9E1EDB62665DD9EF474C40F7DC90BB342E27CA7105E3A9B0B9B675942AB771637B9CEA5B5BA4FFB54E71F57
: 9AF66CA9BC9EC2CEB36ACF4FC8413A878066F388
1410 8: OCTET STRING:'C62141F0E888C6D9'
1420 2: INTEGER:2048
A.3.3. Decrypted key value Key Value in BASE64 format Format
MIHiAgEBMBcGCCqFAwcBAQECMAsGCSqFAwcBAgECAQRAEWkl+eblsHWs86SNgRKq
SxMOgGhbvR/uZ5/WWfdNG1axvUwVhpcXIxDZUmzQuNzqJBkseI7f5/JjXyTFRF1a
+YGBgQG0i7davCkOGGVcYqFPtS1fUIROzB0fYARIe0tclTRpare/qzRuVRapqzzO
+K21LDpYVfDPs2Sqa13ZN+Ts/JUlv59qCFB2cYpFyB/0kh4+K79yvz7r8+4WE0Em
Zf8T3ae/J1Jo6xGunecH1/G4hMts9HYLnxbwJDMNVGuIHV6gzg==
A.3.4. Decrypted key value Key Value in ASN.1 format Format
0 226:SEQUENCE : 226:SEQUENCE:
3 1: INTEGER : INTEGER: 1
6 23: SEQUENCE : SEQUENCE:
8 8: OBJECT IDENTIFIER : IDENTIFIER: [1.2.643.7.1.1.1.2]
18 11: SEQUENCE : SEQUENCE:
20 9: OBJECT IDENTIFIER : IDENTIFIER: [1.2.643.7.1.2.1.2.1]
31 64: OCTET STRING : STRING:
: 116925F9E6E5B075ACF3A48D8112AA4B130E80685BBD1FEE679FD6
: 59F74D1B56B1BD4C158697172310D9526CD0B8DCEA24192C788EDF
: E7F2635F24C5445D5AF9
97 129: CONTEXT SPECIFIC (1) : (1):
: 01B48BB75ABC290E18655C62A14FB52D5F50844ECC1D1F6004487B
: 4B5C9534696AB7BFAB346E5516A9AB3CCEF8ADB52C3A5855F0CFB3
: 64AA6B5DD937E4ECFC9525BF9F6A085076718A45C81FF4921E3E2B
: BF72BF3EEBF3EE1613412665FF13DDA7BF275268EB11AE9DE707D7
: F1B884CB6CF4760B9F16F024330D546B881D5EA0CE
Acknowledgments
The author thanks Potashnikov Alexander, Pianov Alexander Potashnikov, Semen Pianov, and Smyslov Valery
Smyslov for their careful readings and useful comments.
Author's Address
Ekaterina Karelina (editor)
InfoTeCS
2B stroenie 1, ul. Otradnaya
Moscow
127273
Russian Federation
Email: Ekaterina.Karelina@infotecs.ru